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The Cost of Capital for Alternative Investments
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ABSTRACT

Traditional risk factor models indicate that hedge funds capture pre-fee alphas of 6%
to 10% per annum over the period from 1996 to 2012. At the same time, the hedge
fund return series is not reliably distinguishable from the returns of mechanical S&P
500 put-writing strategies. We show that the high excess returns to hedge funds and
put-writing are consistent with an equilibrium in which a small subset of investors
specialize in bearing downside market risks. Required rates of return in such an
equilibrium can dramatically exceed those suggested by traditional models, affecting
inference about the attractiveness of these investments.

LINEAR FACTOR REGRESSIONS (e.g., Capital Asset Pricing Model (CAPM), Fama–
French three-factor model, Fung–Hsieh nine-factor model, and conditional
variations thereof) indicate that hedge funds deliver statistically significant
alphas (Sharpe (1964), Lintner (1965), Fama and French (1993), Agarwal and
Naik (2004), Fung and Hsieh (2004), Hasanhodzic and Lo (2007)). Over the
period from January 1996 to June 2012, pre-fee alpha estimates for diversified
hedge fund indices range from 6% to 10% per annum, and thus, even after
deducting fees, investors appear to earn large abnormal returns relative to
commonly used risk models. These estimates indicate a degree of market inef-
ficiency, that is dramatically different from other areas of investment manage-
ment (Fama and French (2010)), and suggest that hedge fund returns cannot
be replicated by portfolios combining traditional risk factors. Another inter-
pretation of these results is that the proposed risk models fail to identify, or
accurately measure, an important dimension of risk that hedge fund investors
specialize in bearing. In this paper, we explore this explanation, focusing on
downside market risks and their implications for cost of capital computations
when the asset market equilibrium may involve investor specialization.
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Merton (1987) explores a simple one-factor equilibrium model in which
agents only trade subsets of assets, and demonstrates that linear factor pricing
fails in this setting. In particular, assets that are borne by specialized investors
appear to earn positive abnormal returns relative to the market portfolio.
Equivalently, the equilibrium required rate of the return on these “specialized
investments” exceeds the required rate of return implicit in linear factor
regressions. We argue that a similar type of equilibrium may help rationalize
the returns to alternative investments (and also index put-writing strategies).
In practice, while alternatives comprise a modest 2% share of the global
wealth portfolio, most investors hold none of these investments, leaving a few
investors with large allocations relative to the aggregate supply.1 For example,
as of June 2010, 40% of the aggregated Ivy League endowment assets were
allocated to nontraditional assets (Lerner, Schoar, and Wang (2008)). From this
perspective, the high excess returns of alternatives may simply reflect fair com-
pensation demanded by specialized investors, rather than unearned returns,
or “alpha.”

We focus on the possibility that, in aggregate, hedge fund investors spe-
cialize in bearing downside market risks. These risks concentrate losses in
highly adverse economic states, and are known to receive high equilibrium
risk compensation. Importantly, the additional compensation demanded by in-
vestors that specialize in bearing these risks is likely to be large relative to
that prevailing in the absence of segmentation, as these assets magnify the
negative skewness of aggregate (market) shocks. While evidence of nonlinear
systematic risk exposures resembling those of index put-writing is provided by
Mitchell and Pulvino (2001) for risk arbitrage and Agarwal and Naik (2004)
for a large number of equity-oriented strategies, the literature—aside from Lo
(2001)—has been comparatively silent on nonlinear replicating strategies. We
fill this gap by constructing the returns to a range of S&P 500 equity index op-
tion writing strategies designed to satisfy exchange margin requirements, as
emphasized by Santa-Clara and Saretto (2009).2 Specifically, we contrast the
hedge fund index returns with two put-writing portfolios with different down-
side risk exposures, as measured by how far the put option is out-of-the-money
and how much leverage is applied to the portfolio. Each of these strategies
provides an unbiased proxy for pre-fee hedge fund returns, delivering a zero

1 As of the end of 2010, the total assets under management held by hedge funds stood at roughly
$2 trillion (source: HFRI), in comparison to a combined global equity market capitalization of $57
trillion (source: World Federation of Exchanges) and a combined global bond market capitalization
of $54 trillion, excluding the value of government bonds (source: TheCityUK, “Bond Markets 2011”).

2 Our methodology for constructing put-writing strategy returns improves on several nonlinear
risk factors proposed in the hedge fund literature. For example, we consider a wide range of option
moneyness levels and leverage magnitudes, whereas Agarwal and Naik (2004) only use options
that are 1% out-of-the-money. Fung and Hsieh (2004) construct factors based on the theoretical
returns to lookback straddle portfolios, that are designed to capture long exposure to volatility.
Instead, our focus is on strategies that are short volatility. The extreme volatility of the lookback
straddle factors also suggests that—in order to ensure feasibility—short exposures would place
severe margin requirements on the investor.
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Figure 1. Replicating the risks and returns of the HFRI Fund Weighted Composite In-
dex. The top panels plot the cumulative value of $1 invested in the HFRI Fund Weighted Composite
Index (pre-fees; “Actual”), along with various replicating strategies. The left-hand panel shows the
cumulative return based on the fitted values from three common factor models (CAPM, Fama–
French/Carhart, Fung–Hsieh) exclusive of the estimated intercept (feasible linear replication).
The middle panel repeats the plot based on the fitted factor models, but returns are cumulated
inclusive of the estimated intercept (infeasible linear replication). The right-hand panel plots the
returns to the two put-writing strategies (feasible nonlinear replication). Relative to the [Z = −1,
L = 2] put-writing strategy, the [Z = −2, L = 4] strategy applies a higher amount of leverage
to options that are written further out of the money. The bottom panels plot the corresponding
monthly drawdown series for the hedge fund index and the replicating strategies.

intercept and unit slope coefficient when the index excess returns are regressed
onto the strategy excess returns.

Figure 1 plots the value of $1 invested in the aggregate hedge fund index
(pre-fees), along with various replicating strategies. The left-hand panel shows
the cumulative return based on the fitted values from three common factor
models exclusive of the estimated intercept (feasible linear replications), the
middle panel repeats the plot but inclusive of the estimated intercept (infea-
sible linear replication), and the right-hand panel plots the returns to the two
put-writing strategies (feasible nonlinear replication). The performance of the
aggregate hedge fund index is impressive, accumulating wealth much more
quickly than the risk-matched common factors predict would be fair. Popular
common factor models explain most of the time series variation, but miss most
of the mean, identifying this as alpha. The graph also shows that the com-
mon factors beyond the market factor explain little of the overall pattern, so
much of our analysis emphasizes the market factor. On the other hand, simple
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put-writing portfolios that explicitly bear downside market risks appear to
track the economically important time series variation well, and also explain
the mean return, suggesting that there is no alpha in the pre-fee returns rela-
tive to these passive benchmarks.

The empirical analysis of downside risk exposure in hedge fund returns is
complicated by the presence of unconditional (Asness, Krail, and Liew (2001),
Getmansky, Lo, and Makarov (2004)) and conditional (Bollen and Pool (2008))
return smoothing, reflecting asset illiquidity and discretion in marking port-
folio net asset values (NAVs) (Cassar and Gerakos (2011), Cao et al. (2013)).
These features of reported returns may effectively hide downside market risk
exposure, making reported returns conform to linear risk models more than
the true returns really do. For example, regressions that include both common
factors and put-writing portfolios suggest that the common factors explain the
time-series variation but that the put-writing factors are not reliably related
to the reported returns. Yet, as we show, this conclusion hinges critically on the
assumption that hedge fund portfolio returns were accurately marked in two
key months (August 1998 and October 2008), out of 198 months in our sample.
Even a modest degree of smoothing in these two months alone is sufficient
to reestablish the significance of the put-writing factors and the conclusion of
insignificant pre-fee alphas. These investments may thus have large downside
market risk exposures, which would dramatically alter inferences about risks
and required returns, especially when held in large allocations.

We evaluate the performance of the hedge fund indices and put-writing
strategies from the perspective of an equilibrium with specialized investors,
in the sprit of Merton (1987). To compute investor-required rates of return, we
assemble a simple static portfolio selection framework that combines constant
relative risk aversion (CRRA) utility preferences with a state-contingent asset
payoff representation (Debreu (1959), Arrow (1964)), which specifies each as-
set’s payoff as a function of the aggregate equity index (here, the S&P 500). In
particular, we capture the downside risk exposure of a specialized investment
with a portfolio of cash and equity index options, which provides a complete
state-contingent description of an investable alternative to the aggregate hedge
fund universe. We then determine the investor’s required rate of return as a
function of (a) portfolio concentration, (b) the payoff profile of the investments,
and (c) the distribution of the common market factor. We show that, for a wide
range of plausible parameter values, there exists a large wedge between the
model-required rate of return and the one suggested by the product of an as-
set’s market beta and the equilibrium equity risk premium. Put differently, fair
pricing of downside market risk exposures in an equilibrium featuring special-
ized investors predicts large positive alphas in linear factor regressions onto
the commonly traded risk factor (i.e., the equity index). In particular, we find
that proper required rates of return that reflect the size of the allocation to
these investments can vary widely, suggesting a promising path for rationaliz-
ing the high realized returns of the aggregate hedge fund index and of various
index put-writing strategies within allocation sizes that are typical of many
specialized end investors.
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The remainder of the paper is organized as follows. Section I describes the
risk profile of hedge funds. Section II presents a simple recipe for constructing
feasible passive portfolios with known downside risk exposures with index put
options, and empirically examines how these portfolios relate to the returns
of the aggregate hedge fund indices. Section III develops a generalized asset
allocation framework for computing the cost of capital for investors with large
allocations to assets with downside risks. Finally, Section IV concludes the
paper.

I. Properties of Hedge Fund Returns

We begin our investigation of hedge fund returns with an assessment of the
risk properties of the aggregate asset class. We proxy for the performance of the
hedge fund universe using two indices: the (value-weighted) Dow Jones/Credit
Suisse (DJSC) Broad Hedge Fund Index, and the (equal-weighted) HFRI Fund
Weighted Composite Index. These indices are not directly investable, and
are thought to provide an upward biased assessment of hedge fund perfor-
mance due to the presence of backfill and survivorship bias in the underlying
databases (Malkiel and Saha (2005)). To the extent that these biases affect the
measured risks, it is unlikely that the true risks are lower than those estimated
from the realized returns over this period.

Table I reports summary statistics for the HFRI and DJCS aggregates com-
puted using monthly returns, in excess of the one-month U.S. Treasury bill
return, from January 1996 to June 2012 (198 months). Since our goal is to
characterize compensation for bearing risk in capital markets rather than in-
vestor returns per se, we report summary statistics for pre-fee index returns.
To estimate pre-fee returns, we treat the observed net-of-fee time series as if it
represented the return of a representative fund that was at its high watermark
throughout the sample, and charged a 2% flat fee and a 10% incentive fee, both
payable monthly.3 The difference between the mean pre-fee and net-of-fee re-
turns represents an approximation of the all-in investor fee. For comparison,
using cross-sectional data from the TASS database for the period 1995 to 2009,
Ibbotson, Chen, and Zhu (2010) find that the average fund collected an all-in
annual fee of 3.43%. French (2008) reports an average total fee of 4.26% for
U.S. equity-related hedge funds in the HFRI database using data from 1996
through 2007. We find that our simple estimates of all-in fees of 3.8% for the
HFRI and DJCS coincide well with these values.

Table I also summarizes the excess returns to a variety of common factors
used to describe the risks of risky investments. In particular, we focus on the
factors suggested by the CAPM, the Fama–French three factor model (Fama

3 In practice most funds impose a “2-and-20” compensation scheme, comprised of a 2% flat fee and
a 20% incentive allocation, subject to a high watermark provision. Our compensation scheme can
therefore loosely be interpreted as describing the scenario where half of the funds in the universe
are at their high watermark at each point in time. Our computation is also likely conservative in
that the incentive component represents an option on the pre-fee return of a portfolio of funds,
rather than a portfolio of options on the pre-fee returns of the underlying funds.



2190 The Journal of Finance R©

T
ab

le
I

S
u

m
m

ar
y

S
ta

ti
st

ic
s

T
h

is
ta

bl
e

re
po

rt
s

th
e

ex
ce

ss
re

tu
rn

s
of

h
ed

ge
fu

n
d

in
di

ce
s,

co
m

m
on

ri
sk

fa
ct

or
s,

as
w

el
la

s
S

&
P

50
0

pu
t-

w
ri

ti
n

g
st

ra
te

gi
es

be
tw

ee
n

Ja
n

u
ar

y
19

96
an

d
Ju

n
e

20
12

(N
=

19
8

m
on

th
s)

.T
h

e
H

F
R

I
F

u
n

d
W

ei
gh

te
d

C
om

po
si

te
In

de
x

(H
F

R
I)

an
d

th
e

D
ow

Jo
n

es
/C

re
di

t
S

u
is

se
B

ro
ad

H
ed

ge
F

u
n

d
In

de
x

(D
JC

S
)

se
ri

es
ar

e
pr

e-
fe

e
h

ed
ge

fu
n

d
in

de
x

re
tu

rn
se

ri
es

ba
se

d
on

da
ta

fr
om

H
ed

ge
F

u
n

d
R

es
ea

rc
h

In
c.

an
d

D
ow

Jo
n

es
/C

re
di

t
S

u
is

se
,r

es
pe

ct
iv

el
y.

To
co

m
pu

te
pr

e-
fe

e
re

tu
rn

s,
w

e
tr

ea
t

th
e

ob
se

rv
ed

af
te

r-
fe

e
ti

m
e

se
ri

es
as

if
it

re
pr

es
en

te
d

th
e

re
tu

rn
of

a
re

pr
es

en
ta

ti
ve

fu
n

d
th

at
w

as
at

it
s

h
ig

h
w

at
er

m
ar

k
th

ro
u

gh
ou

t
th

e
sa

m
pl

e,
an

d
ch

ar
ge

d
a

2%
fl

at
fe

e
an

d
a

10
%

in
ce

n
ti

ve
fe

e,
bo

th
pa

ya
bl

e
m

on
th

ly
.

T
h

e
se

t
of

co
m

m
on

ri
sk

fa
ct

or
s

in
cl

u
de

s
th

e
F

am
a–

F
re

n
ch

(1
99

3)
fa

ct
or

s,
th

e
m

om
en

tu
m

fa
ct

or
of

C
ar

h
ar

t
(1

99
7)

,a
n

d
th

e
F

u
n

g–
H

si
eh

(2
00

2)
fa

ct
or

s.
T

h
e

tw
o

S
&

P
50

0
pu

t-
w

ri
ti

n
g

st
ra

te
gi

es
,

[Z
,
L

],
di

ff
er

in
th

e
di

st
an

ce
of

th
e

op
ti

on
st

ri
ke

pr
ic

e
re

la
ti

ve
to

th
e

sp
ot

pr
ic

e
(Z

),
an

d
th

e
am

ou
n

t
of

le
ve

ra
ge

ap
pl

ie
d

at
in

it
ia

ti
on

(L
).

M
ea

n
s,

vo
la

ti
li

ti
es

,C
A

P
M

al
ph

as
(α̂

),
an

d
S

h
ar

pe
ra

ti
os

(S
R

)a
re

re
po

rt
ed

in
an

n
u

al
iz

ed
te

rm
s.

S
ke

w
n

es
s

an
d

ku
rt

os
is

es
ti

m
at

es
ar

e
ba

se
d

on
m

on
th

ly
ex

ce
ss

re
tu

rn
s.

JB
an

d
p J

B
re

po
rt

th
e

va
lu

e
of

th
e

Ja
rq

u
e–

B
er

a
te

st
st

at
is

ti
c

fo
r

n
or

m
al

it
y,

an
d

it
s

as
so

ci
at

ed
p-

va
lu

e
ba

se
d

on
a

fi
n

it
e-

sa
m

pl
e

di
st

ri
bu

ti
on

ob
ta

in
ed

by
M

on
te

C
ar

lo
.C

A
P

M
α̂

an
d
β̂

re
po

rt
th

e
in

te
rc

ep
t

(a
n

n
u

al
iz

ed
)a

n
d

sl
op

e
co

ef
fi

ci
en

t
fr

om
a

re
gr

es
si

on
of

th
e

m
on

th
ly

ex
ce

ss
re

tu
rn

of
ea

ch
as

se
t

on
to

th
e

m
on

th
ly

ex
ce

ss
re

tu
rn

of
th

e
m

ar
ke

t
(S

&
P

50
0)

.
A

R
(1

)
re

po
rt

s
th

e
va

lu
e

of
th

e
fi

rs
t-

or
de

r
re

tu
rn

au
to

co
rr

el
at

io
n

co
ef

fi
ci

en
t,

an
d

it
s

as
so

ci
at

ed
t-

st
at

is
ti

c.
D

ra
w

do
w

n
m

ea
su

re
s

th
e

la
rg

es
t

pe
ak

-t
o-

tr
ou

gh
re

tu
rn

lo
ss

fo
r

ea
ch

st
ra

te
gy

;t
h

e
ta

bl
e

re
po

rt
s

th
e

m
in

im
u

m
dr

aw
do

w
n

ov
er

th
e

fu
ll

sa
m

pl
e

(M
in

)
an

d
in

19
98

an
d

20
08

.

C
A

P
M

A
R

(1
)

D
ra

w
do

w
n

A
ss

et
M

ea
n

V
ol

.
S

ke
w

K
u

rt
.

JB
p J

B
S

R
α̂

β̂
C

oe
ff

t-
st

at
M

in
19

98
20

08

H
F

R
I

9.
3%

7.
9%

−0
.4

6
4.

86
35

.6
0.

00
1.

18
7.

3%
0.

37
0.

25
3.

65
−1

8.
8%

−1
0.

8%
−1

8.
3%

D
JC

S
9.

6%
8.

0%
−0

.0
8

5.
47

50
.7

0.
00

1.
20

8.
0%

0.
29

0.
16

2.
26

−1
8.

8%
−1

3.
4%

−1
8.

8%
H

F
R

I
(a

ft
er

-f
ee

)
5.

5%
7.

4%
−0

.6
4

5.
27

56
.2

0.
00

0.
74

3.
6%

0.
35

0.
26

3.
73

−2
1.

4%
−1

1.
4%

−2
0.

5%
D

JC
S

(a
ft

er
-f

ee
)

5.
8%

7.
5%

−0
.3

0
5.

68
62

.1
0.

00
0.

78
4.

4%
0.

27
0.

17
2.

44
−1

9.
7%

−1
3.

8%
−1

9.
7%

H
F

R
I

(u
n

-
sm

oo
th

ed
)

9.
3%

9.
5%

−1
.9

9
15

.4
3

1,
40

6.
8

0.
00

0.
98

7.
0%

0.
42

0.
06

0.
89

−2
2.

2%
−1

9.
1%

−2
2.

2%

D
JC

S
(u

n
-

sm
oo

th
ed

)
9.

6%
9.

0%
−1

.5
5

13
.0

1
90

5.
4

0.
00

1.
06

7.
7%

0.
34

0.
01

0.
20

−2
0.

9%
−1

4.
8%

−2
0.

9%

(C
on

ti
n

u
ed

)



The Cost of Capital for Alternative Investments 2191

T
ab

le
I—

C
on

ti
n

u
ed

C
A

P
M

A
R

(1
)

D
ra

w
do

w
n

A
ss

et
M

ea
n

V
ol

.
S

ke
w

K
u

rt
.

JB
p J

B
S

R
α̂

β̂
C

oe
ff

t-
st

at
M

in
19

98
20

08

H
F

R
I

(u
n

-
sm

oo
th

ed
;

lo
gs

)

9.
4%

9.
4%

−1
.7

5
14

.1
2

1,
12

2.
3

0.
00

1.
00

7.
2%

0.
42

0.
05

0.
75

−2
1.

8%
−1

8.
4%

−2
1.

8%

D
JC

S
(u

n
-

sm
oo

th
ed

;
lo

gs
)

9.
6%

8.
9%

−1
.4

1
12

.1
5

75
6.

7
0.

00
1.

08
7.

9%
0.

33
0.

01
0.

09
−2

0.
6%

−1
4.

2%
−2

0.
6%

M
K

T
-R

F
5.

6%
17

.0
%

−0
.6

8
3.

88
21

.8
0.

00
0.

33
0.

1%
1.

03
0.

13
1.

77
−5

1.
6%

−1
7.

7%
−4

2.
8%

S
M

B
3.

3%
12

.9
%

0.
81

10
.4

4
47

8.
3

0.
00

0.
25

2.
8%

0.
09

−0
.0

8
−1

.1
0

−2
7.

6%
−2

2.
7%

−8
.7

%
H

M
L

2.
9%

12
.2

%
0.

04
5.

46
49

.9
0.

00
0.

23
3.

5%
−0

.1
3

0.
12

1.
68

−4
0.

7%
−1

2.
6%

−8
.9

%
M

O
M

5.
5%

20
.0

%
−1

.4
9

11
.4

1
65

7.
1

0.
00

0.
27

7.
7%

−0
.4

1
0.

08
1.

08
−5

7.
6%

−5
.2

%
−8

.5
%

F
H

1
(S

P
50

0)
5.

4%
16

.2
%

−0
.5

7
3.

63
14

.0
0.

01
0.

33
0.

0%
1.

00
0.

09
1.

30
−5

0.
2%

−1
5.

2%
−4

0.
2%

F
H

2
(S

IZ
E

)
1.

0%
12

.3
%

0.
24

7.
44

16
4.

3
0.

00
0.

08
0.

7%
0.

06
−0

.1
3

−1
.9

1
−3

5.
9%

−3
0.

1%
−8

.3
%

F
H

3
(T

re
as

u
ry

)
3.

7%
7.

3%
0.

08
4.

08
9.

8
0.

02
0.

50
4.

2%
−0

.1
0

0.
04

0.
58

−1
0.

0%
−1

.7
%

−3
.5

%
F

H
4

(C
re

di
t)

−0
.1

%
5.

3%
−0

.1
5

6.
52

10
2.

8
0.

00
−0

.0
1

−1
.0

%
0.

17
0.

17
2.

44
− 1

9.
8%

−4
.5

%
−1

9.
8%

F
H

5
(T

F
-B

D
)

−2
1.

6%
51

.8
%

1.
50

6.
04

15
0.

2
0.

00
−0

.4
2

−1
7.

5%
−0

.7
7

0.
10

1.
42

−9
9.

8%
−5

6.
3%

−9
8.

9%
F

H
6

(T
F

-F
X

)
−5

.6
%

63
.4

%
1.

12
4.

40
57

.5
0.

00
−0

.0
9

−0
.7

%
−0

.9
1

0.
03

0.
42

−9
7.

1%
−5

9.
0%

−7
8.

9%
F

H
7

(T
F

-C
O

M
)

−0
.7

%
49

.1
%

1.
13

5.
00

75
.5

0.
00

−0
.0

2
2.

0%
−0

.5
2

−0
.0

4
−0

.5
8

−9
5.

6%
−2

2.
2%

−8
7.

5%
F

H
8

(T
F

-I
R

)
16

.6
%

99
.2

%
4.

16
26

.4
9

5,
12

6.
0

0.
00

0.
17

25
.8

%
−1

.7
3

0.
25

3.
53

−9
8.

0%
−4

9.
4%

−8
7.

3%
F

H
9

(T
F

-S
T

K
)

−6
4.

7%
46

.6
%

1.
14

5.
20

83
.0

0.
00

−1
.3

9
−6

1.
1%

−0
.6

7
0.

18
2.

57
−1

00
.0

%
−6

4.
3%

−1
00

.0
%

P
u

t-
W

ri
ti

n
g

-
[Z

=
−1

,L
=

2]
10

.3
%

7.
7%

−2
.6

0
13

.6
8

1,
16

5.
4

0.
00

1.
34

8.
2%

0.
39

0.
13

1.
88

−2
1.

8%
−8

.5
%

−2
1.

8%

P
u

t-
W

ri
ti

n
g

-
[Z

=
−2

,L
=

4]
11

.5
%

6.
1%

− 3
.6

7
24

.6
6

4,
31

2.
6

0.
00

1.
88

10
.1

%
0.

26
0.

21
3.

05
−2

0.
6%

−5
.8

%
−2

0.
6%



2192 The Journal of Finance R©

and French (1993)) augmented with the momentum factor (Carhart (1997)),
and the Fung–Hsieh nine-factor model (Fung and Hsieh (2001, 2002, 2004))
originally developed to describe hedge fund returns. Finally, we report sum-
mary statistics for two mechanical put-writing strategies designed to function
as downside risk factors. Each strategy holds one-month U.S. Treasury bills
and writes short-dated, out-of-the-money S&P 500 index put options. The two
strategies differ in their downside risk exposures, as measured by how far
the put option is out-of-the-money and how much leverage is applied to the
portfolio, and are described in detail in Section II.

The attraction of hedge funds over this time period is clear: mean returns
on alternatives exceeded that of the stock market index, while incurring lower
volatility. The realized pre-fee Sharpe ratios on alternatives are almost four
times higher than that of the S&P 500 index. Hedge funds also perform well
when evaluated on the dimension of drawdowns, which measure the magnitude
of the strategy loss relative to its highest historical value (or high watermark).
Both hedge fund indices have a minimum drawdown of approximately −20%,
which is less than half of the −50% drawdown sustained by investors in pub-
lic equity markets beginning in September 2008. Overall, the performance of
hedge funds as an asset class is not market-neutral, and has been shown to
be reminiscent of writing out-of-the-money put options on the aggregate index
(Mitchell and Pulvino (2001), Agarwal and Naik (2004)).4 For example, hedge
funds experience severe declines during extreme market events, such as the
credit crisis during the fall of 2008 and the Long Term Capital Management
(LTCM) crisis in August 1998. The Internet Appendix contrasts the cumula-
tive investor returns for the HFRI and DJCS aggregates with the returns to
investing in the S&P 500 and rolling over one-month T-bills (Figure IA.1).5

A critical issue in our analysis is the accuracy of the reported hedge fund re-
turns. In general, the returns to hedge fund indices exhibit significant uncondi-
tional autocorrelation at the monthly horizon (Table I), reflecting the effects of
stale prices and return smoothing (Asness, Krail, and Liew (2001), Getmansky,
Lo, and Makarov (2004)). Cao et al. (2013) estimate that managerial discretion
in marking the fund’s NAV produces one-third of the autocorrelation in fund
returns. There is also evidence of conditional return smoothing consistent with
a higher propensity to underreport losses than gains (Bollen and Pool (2008)).
The smoothing of downside returns coincident with adverse market events
presents a meaningful challenge to the statistical identification of nonlinear
market risk exposures similar to out-of-the-money put-writing. To investigate
the effect of conditional return smoothing on the measured risks of hedge funds,
we construct a hypothetical “unsmoothed” return series. This series adjusts the

4 Patton (2009) studies the neutrality of hedge funds with respect to market risks using cor-
relation, tail exposures, and value-at-risk metrics. He finds that a quarter of the funds in the
“market-neutral” category are significantly nonneutral at conventional significance levels, and an
even greater proportion among funds in the equity hedge, equity nonhedge, event driven, and
fund-of-funds categories.

5 The Internet Appendix is available in the online version of the article, on the Journal of
Finance website.
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reported returns in August 1998 and October 2008, when arbitrage markets
were severely disrupted. In each of these episodes, we adjust returns under
the assumption that funds reported a fraction, φ = 0.50, of their true return
in the event month, with the remainder being included in the subsequent
monthly reported return, thus altering four observations in a sample covering
198 months.6 The unsmoothed return series preserves the arithmetic mean re-
turn of the hedge fund index, but induces more volatility, such that the Sharpe
ratio declines. The measured skewness becomes more negative and kurtosis
rises, as indicated by the Jarque–Bera (1980) statistic. The worst drawdown is
slightly more negative and the CAPM β increases slightly, but not enough to
meaningfully change the CAPM α estimates. Finally, the autocorrelation of the
hedge fund returns becomes statistically indistinguishable from zero. Overall,
these adjustments make the unsmoothed hedge fund returns look more simi-
lar to the downside risk factors. While there is no direct evidence that these
adjustments produce a more accurate description of the true returns to broad
hedge fund portfolios, they highlight the sensitivity of inferences regarding the
underlying risks to a handful of influential observations.

The empirical literature on the characteristics of hedge fund returns focuses
on regressions of index (and individual fund) returns onto various factors
(Fung and Hsieh (2001, 2002, 2004), Agarwal and Naik (2004), Hasanhodzic
and Lo (2007)). We consider several popular factor models, including the
CAPM one-factor model, the Fama–French (1993)/Carhart (2004) four-factor
model, and the Fung–Hsieh nine-factor model (2004), which was specifically
developed to describe the risks of well-diversified hedge fund portfolios (Fung
and Hsieh (2001, 2002, 2004)). Five of the Fung–Hsieh factors are based on
lookback straddle returns, to mimic trend-following strategies, whose return
characteristics are similar to being long options, or volatility (Merton (1981)).
To facilitate comparison with the other factor models, we represent each of the
factors in the form of equivalent zero-investment factor-mimicking portfolios.
Specifically, we make the following adjustments: (a) returns on the S&P 500
and five trend—following factors are computed in excess of the return on
the one-month T-bill (from Ken French’s website); (b) the bond market factor
is computed as the difference between the monthly return on the 10-year
Treasury bond and the return on the one-month T-bill; and (c) the credit
factor is computed as the difference between the total return on the Barclays
(Lehman) U.S. Credit Bond Index and the return on the 10-year Treasury
bond.

Table II reports results from regressions of hedge fund excess returns onto
factor-mimicking portfolio returns using quarterly data spanning January
1996 to June 2012 (N = 66 quarters). We focus on quarterly regressions
to parsimoniously adjust for the effect of return autocorrelation observed
at the monthly frequency. The common factor models tend to describe the

6 Table I also reports the results from applying this adjustment to the monthly log returns,
which preserves the total reported compound return. The analysis in subsequent sections explores
the sensitivity of inference to alternative values of the smoothing parameter, φ.
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time-series variation in the monthly excess returns of the HFRI index
better than those of the DJCS index, consistently achieving higher adjusted
R2s for this index. The adjusted R2 for the HFRI index ranges from 67%
(CAPM) to 80% (Fama–French/Carhart), suggesting a good overall fit, while
ranging from 48% (CAPM) to 61% (Fama–French/Carhart) for the DJCS
index.

Table II shows that, relative to common factor models, hedge funds deliver
pre-fee alphas between 6.3% and 10% per year over the sample period. The pre-
fee alphas for both indices are highly statistically significant across all three
common factor models, with t-statistics ranging from 5.2 to 6.2. Moreover,
these alpha estimates are economically large, exceeding the realized mean risk
premia for all of the considered common factors, with the exception of one of
the Fung–Hsieh factors that has an annualized volatility of 99%. Remarkably,
standard asset pricing factors never account for more than one-third of the
risk premium earned by hedge funds over the sample period, and contribute
no premium whatsoever in the Fung–Hsieh model. The net contribution of
the nonmarket common factors (i.e., SMB, HML, MOM, etc.) in explaining the
mean excess returns of the two hedge fund indices turns out to be minimal. In
the Fama–French/Carhart model, only SMB has a factor exposure that differs
reliably from zero, and, while two of the Fung–Hsieh factors are statistically
different from zero, not all of these factors have positive risk premia and thus
the net effect to the model implied risk premium beyond the market exposure
is actually negative.7

The resulting alpha estimates imply an extreme form of capital market ineffi-
ciency relative to other areas of active investment management. The empirical
evidence on risk-adjusted returns to actively managed mutual funds suggests
that the average mutual fund produces pre-fee alphas that are statistically
indistinguishable from zero (see Fama and French (2010) for a recent discus-
sion of the mutual fund evidence). The estimated CAPM alpha for the HRFI
aggregate hedge fund index corresponds to the 97th percentile of active mutual
fund CAPM alphas.8 This suggests that hedge fund and mutual fund alphas
are drawn from very different distributions. One possibility is that hedge fund
managers are simply better than mutual fund managers and use the hedge
fund structure to effectively create a separate labor market. Another possibil-
ity is that the common factor models are missing an important dimension of
the systematic risks of hedge funds.

7 These regression results are robust to the choice of the data frequency as illustrated in
Table IA.I of the Internet Appendix, which repeats the factor analysis using monthly excess re-
turns.

8 The distribution of CAPM alphas is estimated from all mutual funds in the CRSP Mutual
Fund database with at least 60 months of data over the sample period. Active funds are identified
based on regression R2, with those below the 85th percentile of R2 (0.85) being considered active
funds. Lowering the R2 threshold to 0.9 (around the 60th percentile) places the average hedge fund
alpha at the 96th percentile of the distribution of active mutual fund alphas.
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II. Proxying for Downside Risks with Index Put-Writing Portfolios

There are structural reasons to view the aggregate hedge fund exposure as
similar to short index put option exposure. Many strategies explicitly bear
risks that tend to realize when economic conditions are poor and when the
stock market is performing poorly. For example, Mitchell and Pulvino (2001)
document that the aggregate merger arbitrage strategy is like writing short-
dated out-of-the money index put options because the underlying probability
of deal failure increases as the stock market drops. Hedge fund strategies
that are net long credit risk are effectively short long-dated put options on
firm assets—in the spirit of Merton’s (1974) structural credit risk model—such
that their aggregate exposure is similar to writing long-dated index put op-
tions. Other strategies (e.g., distressed investing, leveraged buyouts) can be
viewed as bets on business turnarounds at firms that have serious operating
or financial problems. In the aggregate these assets are likely to perform well
when purchased cheaply so long as market conditions do not get too bad. How-
ever, in a rapidly deteriorating economy these firms are likely to be the first
ones to fail.

The potential for downside exposure of hedge funds is induced not only by
the nature of the economic risks they are bearing, but also by the features of
the institutional environment in which they operate. In particular, almost all
of the strategies above make use of outside investor capital and financial lever-
age. Following negative price shocks, outside investors make additional capital
more expensive, reducing the arbitrageur’s financial slack and increasing the
fund’s exposure to further adverse shocks (Shleifer and Vishny (1997)). Brun-
nermeier and Pedersen (2008) provide a complementary perspective highlight-
ing the fact that, in extreme circumstances, the withdrawal of funding liquidity
(i.e., leverage) to arbitrageurs can interact with declines in market liquidity to
produce severe asset price declines.

To explore the potential for downside risk to explain the attractive returns
to hedge funds, we contrast the index returns of two put-writing portfolios
with different downside risk exposures, as measured by how far the put option
is out-of-the-money and how much leverage is applied to the portfolio. Each
strategy writes a single short-dated put option, and is rebalanced monthly.
We take seriously the problem of capital requirements (Santa-Clara and
Saretto (2009)) and transaction costs to produce returns of feasible put-writing
strategies, thus extending the linear hedge fund replication analysis of
Hasanhodzic and Lo (2007).

A. Measuring Put-Writing Portfolio Returns

To calculate returns and characterize risks associated with put-writing port-
folios, we begin by specifying feasible investment strategies. Implementing
each strategy requires defining the (1) rebalancing frequency, (2) security se-
lection rule, and (3) amount of financial leverage.

Each month from January 1996 through June 2012, we form a simple
portfolio consisting of a short position in a single S&P 500 index put option,
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P(K(Z),T ), and equity capital, κE(L), where K(Z) is the option strike price,
T is the option expiration date, and L is the leverage of the portfolio. The
portfolio buys (sells) put options at the ask (bid) prevailing at the market close
of the month-end trade date.9 If no market quotes are available for the option
contract held by the agent at month-end, portfolio rebalancing is delayed until
such quotes become available. The proceeds from shorting the option along
with the portfolio’s equity capital are invested at the risk-free rate for one
month, earning r f ,t+1. This produces a terminal accrued interest payment of

AIt+1 = (κE(L) + Pbid
t (K(Z),T )) · (er f ,t+1 − 1). (1)

The monthly portfolio return, rp,t+1, is the change in the value of the put option
plus the accrued interest divided by the portfolio’s equity capital:

rp,t+1 = Pbid
t (K(Z),T ) − Pask

t+1(K(Z),T ) + AIt+1

κE(L)
. (2)

We construct strategies that write options at fixed strike Z-scores. Selecting
strikes on the basis of their corresponding Z-scores ensures that the system-
atic risk exposure of the options at the rebalancing dates is roughly constant,
when measured using their Black–Scholes deltas. This contrasts with previous
studies, such as Glosten and Jagannathan (1994), Coval and Shumway (2001),
Bakshi and Kapadia (2003), and Agarwal and Naik (2004), that focus on strate-
gies with fixed option moneyness (measured as the strike-to-spot ratio, K/S,
or strike-to-forward ratio). Options selected by fixing moneyness have higher
systematic risk, as measured by delta or market beta, when implied volatility
is high, and lower risk when implied volatility is low.

In particular, we define the option strike corresponding to a Z-score, Z, as

K(Z) = St · exp
(
σt+1 · Z

)
, (3)

where St is the prevailing level of the S&P 500 index and σt+1 is the one-month
stock index implied volatility, observed at time t . We select the option whose
strike is closest to but below the proposal value (3), and whose expiration date
is closest to but after the end of the month. At trade initiation, the time to
option expiration is roughly equal to seven weeks, since options expire on the
third Friday of the following month. To measure volatility at the one-month
horizon, σt+1, we use the CBOE VIX implied volatility index.

Option writing strategies require the posting of capital, or margin. The cap-
ital bears the risk of losses due to changes in the mark-to-market value of
the liability. The inclusion of margin requirements plays an important role
in determining the profitability of option writing strategies (Santa-Clara and
Saretto (2009)), and further distinguishes our approach from papers in which

9 We aim to provide a conservative assessment of put-writing returns by assuming the strategy
demands immediacy by executing at the opposing side of the bid-ask spread. Returns measured on
the basis of the option midprice are considerably higher given the wide bid-ask spread, especially
in the early part of the sample.



The Cost of Capital for Alternative Investments 2199

the option writer’s capital contribution is assumed to be limited to the option
price, as would be the case for a long position. In the case of put-writing strate-
gies, the maximum loss per option contract is given by the option’s strike value,
K. Consequently, a put-writing strategy is fully funded or unlevered (i.e., can
guarantee the terminal payoff) if and only if the portfolio’s equity capital is
equal to (or exceeds) the maximum loss at expiration. For European options,
this requires an initial investment of unlevered asset capital, κA, equal to the
discounted value of the exercise price less the proceeds of the option sale:

κA = e−r f ,t+τ · K(Z) − Pbid
t (K(Z),T ), (4)

where r f ,t+τ is the risk-free rate of interest corresponding to the time to op-
tion expiration, and is set on the basis of the nearest available maturity in the
OptionMetrics zero curves. The ratio of the unlevered asset capital to the portfo-
lio’s equity capital represents the portfolio leverage, L = κA

κE
. Allowable leverage

magnitudes are controlled by broker and exchange limits, with values up to ap-
proximately 10 consistent with existing CBOE regulations.10 We consider two
put-writing strategies, [Z, L]. In particular, we consider options at two strike
levels, Z ∈ {−1.0,−2.0}, which at inception are on average between 7% (Z = −1)
and 13% (Z = −2.0) below the prevailing index price. By contrast, Agarwal and
Naik (2004) base their “out-of-the-money” put factor on options whose strike is
1% below the prevailing spot price. Consequently, their approach is essentially
equivalent to a linear regression methodology that separately estimates the
downside and upside betas, in the spirit of Glosten and Jagannathan (1994).
For the Z = −1 strategy we apply two times leverage, [Z = −1, L = 2], and for
the Z = −2 strategy we apply four times leverage, [Z = −2, L = 4].

Table I reports summary statistics for the excess returns to the two put-
writing strategies over the period January 1996 to June 2012. The mean excess
returns exceed 10% per annum, roughly matching those of the pre-fee hedge
fund indices, with volatilities no greater than those of hedge funds. Consistent
with being proxies for downside risks, these strategies exhibit significant nega-
tive skewness and excess kurtosis. Finally, the minimum drawdowns sustained
by the put-writing strategies are roughly −20%, again matching the sample
properties of the hedge fund returns. The cumulative performance of these fea-
sible investment strategies contrasts with pre-fee returns to the noninvestable
HFRI Fund-Weighted Composite in the right-hand panel of Figure 1.

10 The CBOE requires that writers of uncovered (i.e., unhedged) puts deposit/maintain 100%
of the option proceeds plus 15% of the aggregate contract value (current index level) minus the
amount by which the option is out-of-the-money, if any, subject to a minimum of [...] option proceeds
plus 10% of the aggregate exercise amount:

min κC BOE
E = Pbid(K, S, T ; t) + max

(
0.10 · K, 0.15 · S − max(0, S − K)

)
.
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A.1. An Example

To illustrate the portfolio construction mechanics, consider the first portfolio
rebalancing trade of the [Z = −1, L = 2] strategy. The initial positions are
established at the closing prices on January 31, 1996, and are held until the last
business day of the following month (February 29, 1996), when the portfolio is
rebalanced. At the inception of the trade the closing level of the S&P 500 index
was 636.02, and the implied volatility index (VIX) was at 12.53%. Together
these values pin down a proposal strike price, K(Z) = 613.95, for the option to
be written via (3) . We then select an option maturing after the next rebalance
date whose strike is closest from below to the proposal value, K(Z). In this case,
the selected option is the index put with a strike of 610 maturing on March 16,
1996. The [Z = −1, L = 2] strategy writes the put, bringing in a premium of
$2.3750, which corresponds to the option’s bid price at the market close. The
required asset capital, κA, for that option is $603.56, and, since the investor
deploys leverage equal to L = 2, he posts capital of κE = $301.78. The investor’s
capital is invested at the risk-free rate, with the positions held until February
29, 1996. The risk-free rates corresponding to the trade roll date (29 days) and
maturity (45 days) are r f ,t+1 = 5.50% and r f ,t+τ = 5.43%, respectively, and are
obtained from the OptionMetrics zero-coupon yield curves. On the trade roll
date, the option position is closed by repurchasing the index put at the close-of-
business ask price of $1.8750. This generates a profit of $0.50 on the option and
$1.3150 of accrued interest, representing a 60 basis point return on investor
capital. Finally, a new strike proposal value that reflects the prevailing market
parameters is computed and the entire procedure repeats.

A.2. Comparison to Capital Decimation Partners

Lo (2001) and Hasanhodzic and Lo (2007) examine the returns to bearing “tail
risk” using a related, naked put-writing strategy employed by a fictitious fund
called Capital Decimation Partners (CDP). The strategy involves “shorting
out-of-the-money S&P 500 put options on each monthly expiration date for
maturities less than or equal to three months, and with strikes approximately
7% out of the money” (Lo (2001), p. 21). This strike selection is comparable to
that of a Z = −1.0 strategy, which between 1996 to 2012 wrote options that
were on average about 7% out-of-the-money. By contrast, given the margin rule
applied in the CDP return computations, the leverage, L, at inception is roughly
three and a half times greater than our preferred put-writing strategy. The
CDP strategy assumes that 66 percent of the margin is required to be posted
as collateral,” where the margin is set equal to 0.15 · S − max(0, S − K) − P.
In what follows, we interpret this conservatively to mean that the strategy
posts collateral that is 66% in excess of the minimum exchange requirement.
Abstracting from the value of the put premium, which is significantly smaller
than the other numbers in the computation, and setting the risk-free interest
rate to zero, the strategy leverage given our definition is
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LCDP = κA

κE
≈ 0.93 · S
(
1 + 2

3

) · (0.15 · S − max(0, S − 0.93 · S)
) = 6.975. (5)

This has led some to conclude that put-writing strategies do not represent a
viable alternative to hedge fund replication, due to difficulties with surviving
exchange margin requirements. As we demonstrate, this is not the case. The
strategies we consider to match the risk exposure of the aggregate hedge fund
universe are comfortably within exchange margin requirements at inception,
and do not violate those requirements intra-month (unreported results).

B. Regression Analysis

Table II reports results from regressions of hedge fund excess returns onto
the excess returns of the put-writing portfolios. As before, the regressions use
quarterly data from January 1996 to June 2012. The estimated hedge fund risk
exposures to each of the put-writing factors are highly statistically significant
for both indices, with t-statistics ranging from 5.4 to 8.8. The adjusted-R2 val-
ues from these regressions are somewhat lower than those from the common
factor regressions reported earlier. The biggest difference is that the estimated
pre-fee alphas are statistically indistinguishable from zero for all of the speci-
fications, with economically small point estimates ranging from −3.2% to 0.0%
for the HFRI index, and from 0.2% to 2.6% for the DJCS index. In all four
regressions, we cannot reject the null hypothesis of a zero intercept and a unit
slope coefficient. Given evidence of hedge fund return smoothing, the risk ex-
posures may in fact be underestimated, inducing an upward bias in the alpha
estimates. Consequently, benchmarking hedge fund risks with the put-writing
factors suggests that hedge fund investors are barely covering their cost of
capital before fees.

Aside from return smoothing, another conceptual issue arising in the regres-
sion analysis of hedge fund returns is the choice of which factors to include.
For example, although the two put-writing strategies are static transforma-
tions of the underlying equity market index return and are closely related to
one another, they are neither spanned by the equity market index nor spanned
by one another. First, excess return regressions of the put-writing strategies
onto the equity market index indicate significant CAPM alphas (see the Inter-
net Appendix; Table IA.II). Second, a regression of the [Z = −2,L = 4] portfolio
excess returns onto the [Z = −1, L = 2] portfolio excess returns produces a
statistically significant annualized alpha of 3.7% (t-statistic = 7.3). Each of
these put-writing strategies appears to be spanning a different dimension of
downside risk. Since hedge funds represent an institutional structure that can
flexibly engage in dynamic trading strategies, their periodic payoff profile can
take on arbitrary shapes in relation to traditional risk factors (e.g., the equity
market index). As a result, a single downside risk factor is unlikely to accu-
rately describe their downside exposure accurately. Moreover, from a practical
standpoint, conditional return smoothing may render the identification and dif-
ferentiation of these exposures essentially impossible. Since these factors earn
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large and statistically distinguishable risk premia, this further complicates
inference regarding true hedge fund alphas.

B.1. Sensitivity of Inferences to Conditional Return Smoothing

Table II highlights that economic inference about capital market efficiency is
quite different depending on whether one views the traditional factors (CAPM,
Fama–French/Carhart, or Fung–Hsieh) or the put-writing factors as providing
a better description of risks underlying hedge fund strategies. The standard
approach to addressing this discrepancy is to combine the relevant factors in a
single regression. However, our results highlight that statistical inference from
this analysis is extremely sensitive to conditional return smoothing affecting a
handful of influential economic observations.

The regressions in Table II indicate that, among the traditional risk factors,
only the equity market factor (CAPM) plays a meaningful role in explaining
the realized excess returns. We therefore focus our analysis on regressions
combining the market factor with one of the two nonredundant put-writing
strategies. To maximize the statistical power of the regressions, and explore
the effects of return smoothing on inference, we focus on the monthly excess
return regressions. Given the strong evidence of autocorrelation in hedge fund
returns (Table I) and the literature on unconditional and conditional return
smoothing, we include two monthly lags of the market factor (Scholes and
Williams (1977)). The basic idea is that the factor portfolio returns are generally
well marked each period, while the test asset may be marked less accurately.
The lagged regressors help correct for the measurement errors created by any
nonsynchronicity in returns.

Given the empirical evidence of conditional return smoothing and managerial
discretion in marking hedge fund NAVs, simply adding lagged regressors may
not properly capture the full risk exposure. In particular, this procedure will be
less effective if the reporting errors in hedge fund returns are concentrated in
certain episodes. Rather than some of the market “beta” simply being spread
over time in a consistent manner because of constant reporting errors, consider
the situation in which the “beta” of hedge fund returns is magnified in poor
market environments, but more likely to be reported with error at these times.
This would have the effect of altering a return series exposed to downside
risks to look more like one with constant market exposure but state-dependent
reporting errors.

To investigate the sensitivity of inferences to this possibility, we repeat the
regression analysis using the reported return series and hypothetical “un-
smoothed” hedge fund return series. We focus on two months for which hedge
fund reporting errors are likely, August 1998 and October 2008. We adjust re-
turns under the assumption that some fraction, φ, of the full return is reported
in the event month, with the remaining return included in the subsequent
monthly reported return, rt = φ · Rt, and rt+1 = Rt+1 + (1 − φ) · Rt, where rt is
the reported return and Rt is the full return in event month t. With two events,
this procedure affects four monthly returns in the 198-month sample.
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Tables III and IV report the results from these regressions. We report regres-
sion results as a function of the fraction, φ, of the true return that was marked
contemporaneously during the two event periods. We consider four values of
φ, namely, φ = 1 (no smoothing) and three progressively increasing levels of
smoothing, φ = {0.67,0.50,0.33}. In the unadjusted (as reported) return series
for both the HFRI and DJCS indices, the market factor and both of its lags
are statistically significant, while neither of the put-writing factors is statis-
tically reliable. These specifications suggest that the market factor provides a
better description of the reported return series than either of the put-writing
factors, pointing to statistically significant and economically large alphas. As
the severity of the assumed return smoothing increases, the coefficients on the
put-writing factors consistently increase and become statistically significant.
At the same time, the sum of the coefficients on the market factor and its lags
decrease as reporting errors increase, with the coefficients on the lagged market
factor becoming statistically indistinguishable from zero. The adjusted hedge
fund returns suggest that the put-writing factors are statistically relevant for
explaining the time series variation, and imply statistically unreliable and eco-
nomically small pre-fee alphas for the aggregate hedge fund indices. In the
Internet Appendix, we demonstrate that these results are robust to applying
the smoothing procedure to log returns, which preserves the geometric—rather
than average—return of the reported hedge fund return series (Tables IA.III
and IA.IV). Finally, it is important to emphasize that we do not obtain direct
evidence that the adjusted returns more accurately describe the true hedge
fund index returns; rather, the results simply demonstrate the extreme sensi-
tivity of regression-based inference to the accuracy of reported returns in two
economically important episodes.11

C. Evaluating Hedge Fund Replication Strategies

Statistical analysis of hedge fund returns vis-a-vis traditional risk fac-
tors (CAPM, Fama–French/Carhart, Fung–Hsieh) and put-writing strategies
paints a disparate picture regarding the feasibility of hedge fund replication.
Regressions involving the traditional risk factors find alphas of 6% to 10% per
annum, which suggests a high level of capital market inefficiency and infea-
sibility of replicating hedge fund returns by passively combining traditional
risk factors. By contrast, regressions involving the put-writing factors sug-
gest that hedge funds specialize in bearing downside market risks with the
pricing of these risks well integrated across markets and pre-fee hedge fund
returns are statistically indistinguishable from put-writing strategies such as

11 Correcting the reporting errors requires getting inside the opaque entities that produce the
return series. Cao et al. (2013) use a unique data set of separate accounts available on a platform
offered by Societe Generale. The platform contracts with hedge funds to create accounts that
trade pari passu with the assets in the main fund. The platform calculates and publishes the
NAV and return weekly, while the main funds often provide self-reported performance relatively
infrequently. They estimate that managerial discretion in marking the fund’s NAV produces one-
third of the autocorrelation in fund returns.
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the [Z = −1, L = 2] and [Z = −2, L = 4] strategies, which yields a simple recipe
for replicating hedge fund returns. These two perspectives suggest a starkly
different view of hedge funds and capital markets, but are difficult to disentan-
gle via statistical analysis given concerns about conditional return smoothing
in the reported data (Bollen and Pool (2008), Bollen and Pool (2009), Cao et al.
(2013)).

Figure 1 summarizes the fit of various replicating strategies. The top panels
display the value of an initial $1 investment in the HFRI Fund Weighted
Composite and the various replicating portfolios. The fitted factor model-
replicating portfolios, including the intercept, are shown in the left-hand
panel, the feasible version of the common factor model-replicating portfolios
(i.e., excluding the intercept) are in the middle panel, and the two put-writing
portfolios are displayed in the right-hand panel. The bottom panels plot the
time series of drawdowns for each of the replicating strategies, measured
as the cumulative loss relative to the previous peak. The Internet Appendix
displays results of the corresponding analysis for the DJCS Broad Hedge Fund
Index (Figure IA.2).

The figure highlights the central role of the drift in explaining the overall
fit of the various models, and therefore how one’s prior belief about the
competitiveness of capital markets essentially determines which perspective is
most compelling. Including the 6% to 10% per annum fitted intercept (alpha) in
the total return of the factor-replicating portfolio produces a great match (left-
hand panel), but requires the belief that capital market competition is highly
imperfect as well as the belief that conditional return smoothing is a negligible
concern. A strong belief that capital markets are highly competitive would lead
one to place more weight on feasible strategies, with large unexplained means
allocated to omitted or mismeasured risks owing to the opaqueness of the hedge
fund return generating process. From this perspective, the feasible replicating
portfolios based on traditional factors (middle panel) produce return series that
are highly dissimilar to the HFRI return series. On the other hand, the feasible
put-writing strategies produce time series that look virtually identical to the
aggregate hedge fund index, matching the losses during the fall of 2008 and the
LTCM crisis, the flat performance during the bursting of the Internet bubble,
and the strong returns during boom periods. While the put-writing strategies
fail to explain some of the return variation in economically benign times like
the bull market between 2002 and 2007, they capture well the variation in
economically important times. The similarities between hedge fund returns
and put-writing suggest that hedge funds may be bearing downside risks, and
that the premia for bearing these risks are equalized across markets.

III. Required Rates of Return for Downside Market Risks

The evidence presented so far suggests that the high realized returns of the
aggregate hedge fund indices may reflect compensation for bearing downside
market risks. However, given evidence that equity index options may them-
selves be expensive relative to standard asset pricing models, we are left with
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the possibility that both hedge fund returns and put-writing strategies have
exceeded their cost of capital.12 To explore this conjecture in greater detail
and elucidate the conditions necessary to rationalize the high observed excess
returns for these two strategies, we employ a simple static asset pricing frame-
work inspired by Merton’s (1987) model of investor specialization. In practice,
there is evidence that end users of hedge fund investments (Lerner, Schoar, and
Wang (2008)) and the marginal price setters in equity index options, typically
viewed to be the market markers (Garleanu, Pedersen, and Poteshman (2009)),
are specialized and therefore hold concentrated portfolios. Merton (1987) em-
phasizes that, in the presence of market segmentation, inference based on
linear factor regressions may be misleading. In particular, assets requiring
specialization will appear to have alpha relative to common market factors, as
is the case for hedge fund indices (Table II) and the put-writing strategies (see
the Internet Appendix; Table IA.II).

To investigate the conditions under which the observed returns to hedge fund
investments and put-writing strategies can be viewed as having exceeded their
proper cost of capital, we take equilibrium investor allocations as given and
solve for the required rates of return. In the spirit of Merton (1987), we assume
that markets are segmented and only a small subset of investors is allowed
access to the market for alternatives, which we proxy with the put-writing
strategies introduced earlier. The equilibrium we consider explicitly involves
segmentation, with a small group of specialized investors forced to hold large
allocations of the nontraditional risks, even though they comprise a small share
of the aggregate wealth portfolio. The availability of a clear state-contingent
payoff representation enables us to characterize the required rates of return on
various assets as a function of (a) portfolio concentration, (b) the payoff profile
of the investments, and (c) the distribution of the common market factor.

A. The Investor’s Cost of Capital

To study investor required rates of return for downside market risk exposures
in the context of concentrated portfolios, we employ a static framework that
combines power utility (CRRA) preferences with a state-contingent asset payoff
representation originating in Arrow (1964) and Debreu (1959). We specify the
joint structure of asset payoffs by describing each security’s payoff as a function
of the log return, r̃m, on the aggregate equity index (here, the S&P 500). For
every $1 invested, the state-contingent payoffs of the three assets are as follows:
the risk-free asset pays exp(r f · τ ) in all states; the equity index payoff is, by
definition, exp(rm); and the payoff to the downside risk investment (alternative
investment) is f (rm, P), where P is the price of the alternative investment.
Given a realization of the market return, r̃m, the agent’s utility is given by

12 Coval and Shumway (2001), Bakshi and Kapadia (2003), Bondarenko (2003), Frazzini and
Pedersen (2012), and Constantinides Jackwerth, and Savov (2013) document evidence of large
excess returns to delta-hedged options.
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U (r̃m)= 1
1−γ · ((1−ωm − ωa) · exp(r f · τ )+ωm · exp (r̃m) + ωa · f (r̃m, P))1−γ , (6)

where ωm and ωa are the agent’s allocations to the equity market and alterna-
tives, respectively. Under power utility the investor prefers more positive values
for the odd moments of the terminal portfolio return distribution (mean, skew-
ness), and penalizes for large values of even moments (variance, kurtosis).13

Finally, to operationalize the cost of capital computations we need to specify the
investor risk aversion, γ , and the distribution of the log market index return,
φ(rm).

We are interested in studying the asset pricing implications of a segmented
market equilibrium in which the investor’s allocation to alternatives, ωa, is
pre-specified exogenously to satisfy market clearing (i.e., it is determined by
the equilibrium supply of this type of risk relative to the aggregate wealth of
specialized investors). Taking the alternative allocation, ωa, as given, we solve
for the equilibrium equity market allocation and a valuation for the put option,
(ω∗

m, P∗), which jointly satisfy the investor’s two first-order conditions with
respect to the portfolio weights. At the constrained equilibrium, the specialized
investor’s subjective valuations of the equity index and the alternative payoff,
f (r̃m, P), match their market prices, which are both normalized to one:

Et[
(ω∗
m, ωa, P∗) · exp (r̃m)] = 1, (7a)

Et[
(ω∗
m, ωa, P∗) · f (r̃m, P∗)] = 1, (7b)

where 
 = exp(−r f · τ ) · U ′(·)
Et[U ′(·)] is the investor’s subjective pricing kernel. The

first equation ensures the investor is at his optimal allocation to equities, and
therefore that subsequent required rate of return computations are based on
(constrained) optimal portfolios. The second equation pins down his subjective
valuation for the put option embedded in the alternative investment, P∗, and
is used to determine the required rate of return on alternatives via (8) . Both of
these equations are computed taking the distribution of equity index returns as
exogenous, reflecting the assumption that the specialized investor is assumed
to be a price taker in this market. After we solve for the equilibrium value of
P∗, the specialized investor’s required excess rate of return on the alternative
investment is given by

r∗
a (ωa) = 1

τ
· ln Et

[
f (r̃m, P∗)

Et[
(ω∗
m, ωa, P∗) · f (r̃m, P∗)]

]
− r f

= 1
τ

· ln Et[ f (r̃m, P∗)] − r f . (8)

13 By specifying the joint distribution of returns using state-contingent payoff functions, we can
allow security-level exposures to depend on the market state nonlinearly, generalizing the linear
correlation structure implicit in mean-variance analysis. Patton (2004), Harvey, et al. (2010), and
Martellini and Ziemann (2010) emphasize the importance of higher-order moments and the asset
return dependence structure for portfolio selection.
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Due to our focus on a single-factor payoff representation, we contrast the
proper required rate of return, (8), with the corresponding rate of return based
on the linear (Gaussian) CAPM rule, β · λC APM, where β = Cov[ra, rm]

Var[rm] is the CAPM
β of the alternative on the equity index. The market risk premium in the
Gaussian CAPM is given by λC APM = γ̃ · σ 2

m, where γ̃ is the risk aversion of an
agent who is fully invested in the equity index at his optimum, and σm is the
volatility of the equity index return.

B. Alternative Investment, f (rm,P)

The payoff of the alternative investment is represented using a levered,
naked put-writing portfolio, as in the empirical analysis in Section II. Specif-
ically, we assume that the investor places his capital, ωa, in a limited liability
company (LLC) to eliminate the possibility of losing more than his initial contri-
bution. Limited liability structures are standard in essentially all alternative
investments, private equity, and hedge funds alike, effectively converting their
payoffs into put spreads. In practice, the cost of establishing this structure is
minimal relative to the assets under management, and thus we approximate
its cost as zero. Given a leverage of L, the quantity of puts that can be supported
per $1 of investor capital is given by

q = L
exp

(−r f · τ) · K(Z) − P(K(Z), τ )
, (9)

where K(Z) is the strike corresponding to a Z-score, Z. The put premium and
the agent’s capital grow at the risk-free rate over the life of the trade, and
are offset at maturity by any losses on the index puts to produce a terminal
state-contingent payoff:

f (r̃m, P) = max(0, exp(r f · τ ) · (1 + q · P(K(Z), τ )
)

−q · max(K(Z) − exp (r̃m) , 0)). (10)

The terminal payoff of the alternative depends on the initial put premium,
P, and the terminal realization of the equity index. We substitute this payoff
function into the endowment investor’s first-order conditions to determine his
shadow valuation of the put option, and therefore his required rate of return
on the alternative investment.

C. Equity Index Distribution, φ(rm)

Given our focus on pricing payoffs with nonlinear downside risk exposures,
we choose a parameterization for the equity index distribution, φ(rm) , that can
accommodate the empirical evidence of skewness and kurtosis in index returns.
Specifically, we rely on the normal inverse Gaussian (NIG) distribution, which
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allows us to flexibly specify the first four moments (see Appendix). This pins
down the (conditional) distribution from which we simulate τ -period log index
returns:

rm = (r f + λt − kZ(1)) · τ + Z̃τ , Z̃τ ∼ NIG (0, Vt, S, K) , (11)

where Vt = σ 2
t · τ is the τ -period variance, and S and K are the skewness

and kurtosis of the τ -period returns. The market risk premium, λt = kZ(−γ̃ ) +
kZ(1) − kZ(1 − γ̃ ), and the convexity adjustment (Jensen) term kZ(1) depend on
the cumulant generating function, kZ(u), of the shock, Z̃τ , which is given in
the Appendix. We fix the equilibrium equity risk premium by imposing the
condition that a hypothetical investor, with γ̃ = 2, would be fully invested in
the equity market in the absence of alternatives. In a Gaussian setting, this is
equivalent to an optimal equity allocation of 60% for an investor with a risk
aversion of 3.3 (= γ̃

0.6 ), since the risky asset allocation is an inverse function
of the coefficient of relative risk aversion. Since a portfolio of 40% cash and
60% equities corresponds to an allocation commonly used as a benchmark by
endowments and pension plans, we set the risk aversion of traditional and
specialized investors equal to γ = 3.3.

We calibrate the distribution to match the properties of historical returns. We
estimate volatility as 0.8 times the sample average of the VIX. The remaining
moments are chosen to roughly match historical features of monthly S&P 500
Z-scores, obtained by demeaning the time series of monthly log returns and
scaling them by 0.8 of the VIX as of the preceding month-end. Specifically,
we target a monthly Z-score skewness, S, of −1, and kurtosis, K, of 7. These
parameters combine to produce a left-tail “event” once every five years that
results in a mean monthly Z-score of −3.6. For comparison, the mean value of
the Z-score under the standard normal (Gaussian) distribution, conditional on
being in the left 1/60 percent of the distribution, is −2.5. 14

D. Comparative Statics

The novel components of the framework are the explicitly nonlinear downside
exposure of the alternative investment and the potentially large allocation to
this investment among the few specialized investors who bear this risk in equi-
librium. Figure 2 explores the consequences of this friction for the specialized
investor as a comparative static in ωa. In the absence of market frictions these
risks will be diffusely held and ωa will be small, whereas if market frictions
force high degrees of specialization, then ωa can be quite large.

The upper left panel plots the payoff profiles of the three risky assets, plotted
as a function of the equity market return. By construction, the payoff to the
equity index is a 45-degree line. The two downside risk portfolios differ in their

14 Based on a preceding month-end VIX value of 22.4%, and our parameterization of the NIG
distribution, the −21.6% return of the S&P 500 index in October 1987 corresponds to a Z-score of
−4.7. The probability of observing a monthly return at least as bad as this is 0.2% under the NIG
distribution, and 0.0001% under the Gaussian distribution.
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Figure 2. Required rates of return for large allocations to nonlinear risk exposures.
This figure illustrates the comparative statics of the investor’s required rate of return for various
assets as a function of the asset’s payoff profile and the investor’s portfolio allocation. The top left
panel plots the payoff profile of the equity index and two levered, put-writing portfolios ([Z = −1,
L = 2] and [Z = −2, L = 4]) as a function of the equity index realization. Relative to the [Z = −1,
L = 2] put-writing strategy, the [Z = −2, L = 4] strategy applies a higher amount of leverage to
options that are written further out of the money. The top right panel plots the skewness of the
investor’s optimally invested portfolio as a function of the allocation to the put-writing strategy
(i.e., the alternative investment). The bottom panels plot the required excess rates of return for
the equity index and the alternative investment as a function of the portfolio allocation to the
alternative. The bottom panels display the model required rate of return (solid lines) and the risk
premium under the linear CAPM benchmark (β · γ̃ σ 2; dash-dot lines) for the equity index and the
two put-writing strategies. The bottom left (bottom right) panel plots the required excess rates of
returns for the [Z = −1, L = 2] ([Z = −2, L = 4]) strategy. The underlying equity index distribution
is assumed to follow a normal inverse Gaussian (NIG) distribution with volatility equal to 17.8%
per annum (0.8 times the sample average of the VIX index), skewness equal to −1, and kurtosis
equal to 7.
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state-contingent profiles in that the [Z = −1, L = 2] portfolio is more exposed
to smaller market shocks than the [Z = −2, L = 4] portfolio, but less exposed to
larger market shocks. At the baseline parameter values, the CAPM betas of the
[Z = −1, L = 2] and [Z = −2, L = 4] portfolios are 0.37 and 0.24, respectively,
which accords well with the values realized in the data (Table I).15

The upper right panel plots the skewness of the wealth portfolio as a func-
tion of the allocation to the specialized asset, ωa, along with the skewness of
the underlying equity index for comparison. When market frictions are minor,
allowing for small allocations to the specialized investment, the portfolio skew-
ness is lower than that of the underlying equity index. However, as market
frictions increase, larger allocations are required of the specialized investor
and skewness becomes more negative, quickly exceeding in magnitude that of
the underlying index. This is especially true for the further out-of-the-money
investment with the lower CAPM beta, illustrating that the relative riskiness
of the two downside assets flips as the allocation increases. This highlights the
challenge of identifying required returns from the realized returns of assets
with downside market risk exposures, when neither the risk profile nor the
equilibrium weight is known.

The bottom panels plot the required excess returns for the two specialized
investments as allocations change, along with their CAPM required excess
returns, with the [Z = −1, L = 2] portfolio on the left and the [Z = −2, L = 4]
portfolio on the right. The proper required return for the specialized investor
is increasing and convex in ωa. Even at a small allocation to alternatives, the
proper required return exceeds the CAPM calculation due to the nonlinear
risk profile. These plots further illustrate the challenges in identifying the
proper required return in this setting. There are large regions in which the
risky asset with the lowest CAPM beta has the highest required return—a
higher required return than both the higher beta downside risk portfolio and
the market portfolio that has a beta four times higher.

Figure 3 explores the comparative statics of the investor required excess
rates of return as a function of the moments of the underlying equity index
distribution, holding the investor’s allocation to alternatives fixed at 35%. The
top (bottom) two panels examine the [Z = −1, L = 2] ([Z = −2, L = 4]) portfolio,
plotting its required excess rate of return against those of the underlying equity
index. The left-hand panels explore the comparative static in variance, holding
skewness and kurtosis fixed at their baseline values. The right-hand panels ex-
plore the comparative static in skewness, setting variance at its baseline value
and kurtosis at the minimum value allowable under the NIG parameterization
(K = 3 + 5

3 · S2).
The proper required rate of return for the equity index is essentially linear

in variance, as in the standard Gaussian CAPM model (λ = γ̃ · σ 2), but is some-
what higher, reflecting the departures from Gaussianity (see Appendix). Since

15 We compute the CAPM beta for the nonlinear payoff profile directly from its periodic returns
and those of the equity index, β = Cov[ f (rm)−1,exp(rm)−1]

Var[exp(rm)−1] , evaluating the relevant moments using the
postulated NIG probability distribution.
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Figure 3. Sensitivity of required rates of return to the variance and skewness of the
equity index distribution. This figure illustrates the comparative statics of the required rates
of return for the model and the linear CAPM benchmark (β · γ̃ σ 2) as a function of the moments of
the underlying equity index return distribution. The top (bottom) panels plot the required rates
of return for the equity index and the [Z = −1, L = 2] ([Z = −2, L = 4]) put-writing portfolios.
Relative to the [Z = −1, L = 2] put-writing strategy, the [Z = −2, L = 4] strategy applies a
higher amount of leverage to options that are written further out of the money. The left (right)
panels examine the sensitivity with respect to the variance (skewness) of the underlying equity
index return distribution, which is parameterized using a NIG density. Each panel plots the model
(CAPM) required rate of return for the equity index using a solid (dash-dot) line. The model (CAPM)
required rate of return for the alternative investments are displayed using bold solid (dash-dot)
lines. In each case, the investor is assumed to allocate 35% of his wealth to the put-writing strategy
(i.e., the alternative investment). For the variance comparative static, the skewness (S) is set to −1
and kurtosis (K) is set to 7, as in the baseline distribution. For the skewness comparative static,
the volatility is fixed at 0.8 times the sample average of the VIX index (σ = 17.8%) and kurtosis is
set equal to the minimum value for which the NIG density is well defined (K = 3 + 5

3 · S2).
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there is no role for higher moments in the Gaussian CAPM, the required rate
of return for the equity index does not depend on skewness (right-hand panels).
By contrast, when the common factor follows an NIG distribution, the required
excess rate of return on the equity increases very modestly, rising from 6.3%
(Gaussian; S = 0) to just under 7.0% per annum when skewness reaches a value
of −2. The modest increase in the model equity risk premium as a function of
skewness contrasts with the intuition from consumption-based disaster risk
models (Barro (2006), Barro and Ursua (2008)). These models typically rely on
much higher levels of risk aversion and/or more extreme assumptions regard-
ing the distribution of consumption growth disasters than are consistent with
observed equity index option prices. For example, using the parameter values
from Backus, Chernov, and Martin (2011), a typical Poisson consumption
growth disaster model attributes more than 50% of the equity risk premium,
defined as the expectation of the log equity return over the log risk-free rate,
to high-order moments (skewness, kurtosis, etc.) of the risk factor. By contrast,
the disaster distribution implied from equity index options suggests that less
than 5% of the total equity risk premium is due to higher-order moments.

The required excess rates of return for the alternative investments exhibit
considerably more interesting patterns. First, holding skewness fixed (left-
hand panels), the proper required excess rates of return are much more similar
to those of the equity index than is suggested by the comparatively low CAPM
betas of these investments. Second, there is a significant wedge between the
CAPM and model required excess rates of return, reflecting the joint effect of
the inadequacy of using the CAPM beta to characterize the nonlinear state-
contingent payoff profile of the put-writing portfolio, and the magnification
of the underlying equity index return skewness by the put-writing portfolio.
Increasing the magnitude of skewness in the underlying equity index return
distribution (right-hand panels) has a similarly stark effect on the required
excess rates of return for the put-writing portfolios, causing them to even-
tually exceed those of the equity index itself. Consistent with intuition, the
required rates of return for payoff profiles that reallocate losses to the tail
more aggressively—by applying higher leverage to further out-of-the-money
short positions in options—are much more sensitive to the skewness of the
underlying distribution.

E. Evaluating Downside Risks against a Proper Cost of Capital

To evaluate the realized performance of various portfolios with explicitly non-
linear downside market risks (alternatives), we use the state-contingent payoff
model to produce a time series of required rates of return for the endowment
investor introduced in the previous section. The investor without access to al-
ternatives would allocate 60% to stocks and 40% to risk-free securities, but we
assume that his constrained equilibrium allocation requires either 35% or 50%
to alternatives to match the holdings of various Ivy League endowments.

We produce a time series of proper required rates of return for each con-
sidered downside risk profile according to the following procedure. On each
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rebalancing date we supply the specific composition of the put-writing portfo-
lio along with parameters characterizing the terminal distribution of the (log)
equity index return. At each point in time, the composition of the put-writing
replicating portfolio is pinned down by the option strike, K(Z) , and the option
price, P(Z), which jointly with L determine the quantity of options sold and
the investor’s capital. For parsimony, we hold the skewness and kurtosis of
the market return distribution fixed at their baseline values, and only let the
market return volatility, σt, vary over time, by setting it equal to 0.8 times
the prevailing value of the VIX on each rebalancing date. The time series of
market volatility also pins down the time series of the equilibrium market risk
premium, λt (see Appendix). For comparison, we also produce a time series of
required rates of return for hedge funds based on the Gaussian CAPM model
by multiplying the βt of the option-replicating portfolio by the CAPM market
risk premium, γ̃ · σ 2

t , where γ̃ is the risk aversion of the all-equity investor.
We compute the βt of the option portfolio directly from the joint distribution
of its returns and those of the equity index, as in the comparative statics
analysis.

Before comparing the model required rates of return to the realized returns
of the put-writing strategies, we convert the continuously compounded
required rates of return, r∗

a(ωa), given by (8) into discretely compounded net
returns, and compute the required rate of return given the investor’s allocation
to alternatives, ωa. To obtain the discretely compounded monthly return, we
scale the annualized continuously compounded rate by 1

12 , exponentiate it, and
subtract one. We repeat this procedure at each rebalancing date to produce a
monthly time series of average required rates of return for use in performance
evaluation.

E.1. Estimates of Required Returns

Panel A of Table V illustrates how we calculate required excess returns. The
table reports the annual time series from 1996 through 2012 of various mea-
sures of volatility, as well as the excess realized and required returns for the
S&P 500 index and the (pre-fee) [Z = −1, L = 2] put-writing portfolio. The table
shows that the simple estimate of volatility (σt = 0.8 · V IXt) corresponds closely
to realized volatility year-by-year and on average. Mean reports the full-sample
average with t-statistics reported in square brackets. Over the sample period,
the stock market index realizes, on average, an annualized excess return of
5.4%, while the traditional investor with no allocation to alternatives requires
7.6% per year, given the realized path of volatility over the sample. For compar-
ison, we also report the Gaussian CAPM required return for the equity index,
r∗

m,t = γ̃ · σ 2
t , which averages 7.2%. The small 40 basis point wedge in required

returns for the equity index is created by accounting for skewness and kurtosis
of the assumed equity index distribution. These estimates reflect the severe
consequences of 2008 and 2009, when realized returns were low and realized
volatility was high. Over the more economically benign period of 1996 through
2007, the stock market index average annual excess return is 6.5%, and the



2216 The Journal of Finance R©
T

ab
le

V
C

om
p

ar
is

on
of

R
eq

u
ir

ed
R

at
es

of
R

et
u

rn
(1

99
6:

1–
20

12
:6

)
P

an
el

A
of

th
is

ta
bl

e
co

m
pa

re
s

th
e

re
al

iz
ed

ex
ce

ss
ra

te
s

of
re

tu
rn

fo
r

th
e

S
&

P
50

0
in

de
x

an
d

th
e

[Z
=

−1
,L

=
2]

pu
t-

w
ri

ti
n

g
st

ra
te

gy
,w

it
h

ex
an

te
re

qu
ir

ed
ri

sk
pr

em
ia

.I
n

ve
st

or
re

qu
ir

ed
ra

te
s

of
re

tu
rn

ar
e

co
m

pu
te

d
at

th
e

be
gi

n
n

in
g

of
ea

ch
m

on
th

in
th

e
sa

m
pl

e
(J

an
u

ar
y

19
96

to
Ju

n
e

20
12

)u
si

n
g

in
ve

st
or

po
rt

fo
li

os
an

d
an

es
ti

m
at

e
of

eq
u

it
y

m
ar

ke
t

vo
la

ti
li

ty
(0
.8

·V
IX

t)
ba

se
d

on
th

e
C

B
O

E
V

IX
in

de
x.

R
ea

li
ze

d
vo

la
ti

li
ty

is
co

m
pu

te
d

u
si

n
g

th
e

st
an

da
rd

de
vi

at
io

n
of

da
il

y
re

tu
rn

s
w

it
h

in
ea

ch
m

on
th

,a
n

n
u

al
iz

ed
,a

n
d

re
po

rt
ed

as
a

ye
ar

-b
y-

ye
ar

av
er

ag
e.

T
h

e
re

qu
ir

ed
ri

sk
pr

em
ia

ar
e

co
m

pu
te

d
ba

se
d

on
th

e
G

au
ss

ia
n

C
A

P
M

be
n

ch
m

ar
k

(β
t
·γ̃
σ

2 t
)

an
d

th
e

n
on

li
n

ea
r

m
od

el
in

tr
od

u
ce

d
in

S
ec

ti
on

II
I.

T
h

e
C

A
P

M
be

n
ch

m
ar

k
is

co
m

pu
te

d
u

si
n

g
th

e
ri

sk
av

er
si

on
of

an
al

l-
eq

u
it

y
in

ve
st

or
(γ̃

=
2)

,a
n

d
th

e
m

ar
ke

t
be

ta
of

th
e

pu
t-

w
ri

ti
n

g
po

rt
fo

li
o

at
in

ce
pt

io
n

(β
t)

.T
h

e
m

od
el

re
qu

ir
ed

ra
te

of
re

tu
rn

is
co

m
pu

te
d

as
su

m
in

g
th

e
di

st
ri

bu
ti

on
of

th
e

m
on

th
ly

eq
u

it
y

in
de

x
re

tu
rn

fo
ll

ow
s

a
n

or
m

al
in

ve
rs

e
G

au
ss

ia
n

(N
IG

)
di

st
ri

bu
ti

on
,

w
it

h
an

an
n

u
al

iz
ed

vo
la

ti
li

ty
eq

u
al

to
0.

8
·V

IX
t,

an
d

sk
ew

n
es

s
an

d
ku

rt
os

is
fi

xe
d

at
−1

an
d

7,
re

sp
ec

ti
ve

ly
.T

h
e

m
od

el
re

qu
ir

ed
ra

te
of

re
tu

rn
is

co
m

pu
te

d
fo

r
tw

o
in

ve
st

or
ty

pe
s:

a
tr

ad
it

io
n

al
in

ve
st

or
w

it
h

n
o

al
lo

ca
ti

on
to

al
te

rn
at

iv
es

(ω
a

=
0)

,a
n

d
a

sp
ec

ia
li

ze
d

in
ve

st
or

w
it

h
a

la
rg

e
al

lo
ca

ti
on

to
al

te
rn

at
iv

es
(ω

a
=

0.
35

or
ω

a
=

0.
50

).
E

ac
h

in
ve

st
or

is
as

su
m

ed
to

h
av

e
a

C
R

R
A

ri
sk

av
er

si
on

,γ
,e

qu
al

to
3.

3,
su

ch
th

at
—

in
th

e
ab

se
n

ce
of

al
te

rn
at

iv
es

—
th

ei
r

op
ti

m
al

po
rt

fo
li

o
co

n
si

st
s

ro
u

gh
ly

of
60

%
eq

u
it

ie
s

an
d

40
%

ca
sh

.T
h

e
ta

bl
e

re
po

rt
s

th
e

su
m

of
m

on
th

ly
ex

ce
ss

re
tu

rn
s

w
it

h
in

ea
ch

ye
ar

,a
s

w
el

la
s

th
e

m
ea

n
an

n
u

al
iz

ed
ex

ce
ss

re
tu

rn
fo

r
th

e
fu

ll
sa

m
pl

e
(M

ea
n

).
T

h
e

t-
st

at
is

ti
c

fo
r

th
e

m
ea

n
ex

ce
ss

re
tu

rn
is

re
po

rt
ed

in
sq

u
ar

e
br

ac
ke

ts
.

P
an

el
B

re
po

rt
s

th
e

an
n

u
al

iz
ed

va
lu

es
of

th
e

ar
it

h
m

et
ic

m
ea

n
m

on
th

ly
(e

xc
es

s)
re

tu
rn

s
fo

r
th

e
eq

u
it

y
in

de
x

(S
&

P
50

0)
an

d
tw

o
pu

t-
w

ri
ti

n
g

st
ra

te
gi

es
([

Z
=

−1
,L

=
2]

an
d

[Z
=

−2
,

L
=

4]
),

an
d

co
m

pu
te

s
in

ve
st

or
al

ph
as

as
th

e
di

ff
er

en
ce

in
th

e
re

al
iz

ed
an

d
re

qu
ir

ed
ex

ce
ss

re
tu

rn
s

w
it

h
re

sp
ec

t
to

th
e

li
n

ea
r

C
A

P
M

be
n

ch
m

ar
k

an
d

th
e

m
od

el
im

pl
ie

d
ex

ce
ss

re
tu

rn
fo

r
th

e
tr

ad
it

io
n

al
an

d
sp

ec
ia

li
ze

d
in

ve
st

or
s

(t
-s

ta
ti

st
ic

s
in

br
ac

ke
ts

).
In

ve
st

or
al

ph
as

ar
e

re
po

rt
ed

fo
r

tw
o

sk
ew

n
es

s
le

ve
ls

(−
1

an
d

−1
.5

)
of

th
e

u
n

de
rl

yi
n

g
n

or
m

al
in

ve
rs

e
G

au
ss

ia
n

(N
IG

)
di

st
ri

bu
ti

on
de

sc
ri

bi
n

g
m

on
th

ly
eq

u
it

y
in

de
x

re
tu

rn
s.

*,
**

,a
n

d
**

*
in

di
ca

te
st

at
is

ti
ca

ls
ig

n
ifi

ca
n

ce
at

th
e

10
%

,5
%

,a
n

d
1%

le
ve

ls
,r

es
pe

ct
iv

el
y.

P
an

el
A

:E
xc

es
s

R
et

u
rn

s

V
ol

at
il

it
y

S
&

P
50

0
In

de
x

P
u

t-
W

ri
ti

n
g

[Z
=

−1
,L

=
2]

R
ea

li
ze

d
R

eq
u

ir
ed

R
ea

li
ze

d
R

eq
u

ir
ed

C
A

P
M

Tr
ad

it
io

n
al

P
u

t-
W

ri
ti

n
g

C
A

P
M

Tr
ad

it
io

n
al

S
pe

ci
al

iz
ed

S
pe

ci
al

iz
ed

Ye
ar

0.
8

·V
IX

R
ea

li
ze

d
S

&
P

50
0

( γ̃
σ

2 t
)

(ω
a

=
0)

[Z
=

−1
,L

=
2]

( β
t
·γ̃
σ

2 t
)

(ω
a

=
0)

(ω
a

=
0.

35
)

(ω
a

=
0.

50
)

19
96

13
.1

%
11

.4
%

16
.5

%
3.

5%
3.

6%
10

.0
%

1.
5%

1.
9%

2.
6%

3.
2%

19
97

18
.4

%
17

.2
%

25
.4

%
7.

0%
7.

4%
13

.8
%

2.
8%

3.
9%

5.
9%

7.
1%

19
98

20
.8

%
18

.6
%

23
.4

%
9.

4%
10

.0
%

14
.7

%
3.

6%
5.

4%
8.

2%
9.

9%
19

99
19

.6
%

18
.0

%
15

.7
%

7.
8%

8.
2%

19
.5

%
3.

1%
4.

3%
6.

5%
7.

9%
20

00
18

.5
%

21
.9

%
−1

3.
1%

7.
1%

7.
4%

7.
5%

2.
8%

3.
8%

5.
8%

6.
9%

20
01

20
.6

%
21

.0
%

−1
4.

6%
8.

8%
9.

2%
2.

6%
3.

5%
5.

0%
7.

6%
9.

2%
20

02
20

.9
%

24
.6

%
−2

4.
0%

9.
3%

9.
9%

1.
7%

3.
8%

5.
5%

8.
3%

10
.0

%
20

03
18

.1
%

16
.5

%
25

.1
%

7.
0%

7.
3%

20
.6

%
2.

9%
3.

9%
5.

9%
7.

1%
20

04
12

.5
%

11
.0

%
9.

5%
3.

1%
3.

2%
13

.4
%

1.
4%

1.
7%

2.
5%

2.
9%

(C
on

ti
n

u
ed

)



The Cost of Capital for Alternative Investments 2217
T

ab
le

V
—

C
on

ti
n

u
ed

P
an

el
A

:E
xc

es
s

R
et

u
rn

s

V
ol

at
il

it
y

S
&

P
50

0
In

de
x

P
u

t-
W

ri
ti

n
g

[Z
=

−1
,L

=
2]

R
ea

li
ze

d
R

eq
u

ir
ed

R
ea

li
ze

d
R

eq
u

ir
ed

C
A

P
M

Tr
ad

it
io

n
al

P
u

t-
W

ri
ti

n
g

C
A

P
M

Tr
ad

it
io

n
al

S
pe

ci
al

iz
ed

S
pe

ci
al

iz
ed

Ye
ar

0.
8

·V
IX

R
ea

li
ze

d
S

&
P

50
0

( γ̃
σ

2 t
)

(ω
a

=
0)

[Z
=

−1
,L

=
2]

( β
t
·γ̃
σ

2 t
)

(ω
a

=
0)

(ω
a

=
0.

35
)

(ω
a

=
0.

50
)

20
05

10
.4

%
10

.1
%

2.
4%

2.
2%

2.
3%

8.
7%

1.
0%

1.
2%

1.
7%

1.
9%

20
06

10
.1

%
9.

8%
10

.1
%

2.
1%

2.
1%

9.
8%

0.
9%

1.
1%

1.
6%

1.
8%

20
07

13
.5

%
15

.1
%

1.
5%

3.
9%

4.
0%

9.
8%

1.
7%

2.
2%

3.
2%

3.
7%

20
08

24
.1

%
35

.2
%

−4
4.

0%
14

.1
%

15
.4

%
−1

0.
9%

5.
3%

9.
2%

13
.9

%
16

.8
%

20
09

26
.7

%
25

.0
%

25
.9

%
15

.2
%

16
.4

%
20

.5
%

6.
2%

10
.0

%
15

.0
%

18
.1

%
20

10
19

.3
%

16
.8

%
15

.8
%

7.
8%

8.
2%

11
.9

%
3.

6%
4.

9%
7.

2%
8.

6%
20

11
18

.5
%

20
.4

%
2.

9%
7.

8%
8.

2%
11

.0
%

3.
5%

5.
0%

7.
3%

8.
8%

20
12

15
.7

%
12

.4
%

19
.4

%
5.

1%
5.

3%
11

.3
%

2.
3%

2.
9%

4.
3%

5.
0%

M
ea

n
17

.7
%

17
.9

%
5.

4%
7.

2%
**

*
7.

6%
**

*
10

.3
%

**
*

2.
9%

**
*

4.
3%

**
*

6.
4%

**
*

7.
7%

**
*

[1
.3

]
[1

6.
7]

[1
5.

8]
[5

.4
]

[1
9.

4]
[1

4.
5]

[1
4.

3]
[1

4.
0]

P
an

el
B

:I
n

ve
st

or
A

lp
h

as

N
IG

S
ke

w
n

es
s

=
−1

N
IG

S
ke

w
n

es
s

=
−1

.5

P
u

t-
W

ri
ti

n
g

P
u

t-
W

ri
ti

n
g

P
u

t-
W

ri
ti

n
g

P
u

t-
W

ri
ti

n
g

S
&

P
50

0
[Z

=
−1

,L
=

2]
[Z

=
−2

,L
=

4]
S

&
P

50
0

[Z
=

−1
,L

=
2]

[Z
=

−2
,L

=
4]

R
ea

li
ze

d
ex

ce
ss

re
tu

rn
,R

*
5.

4%
10

.3
%

11
.5

%
5.

4%
10

.3
%

11
.5

%
C

A
P

M
R

*
7.

2%
2.

9%
2.

3%
7.

2%
3.

7%
2.

9%
al

ph
a

−1
.8

%
7.

4%
**

*
9.

2%
**

*
−1

.8
%

6.
7%

**
*

8.
6%

**
*

[−
0.

5]
[3

.9
]

[6
.1

]
[−

0.
5]

[3
.5

]
[5

.8
]

M
od

el
R

*
(t

ra
di

ti
on

al
,ω

a
=

0)
7.

6%
4.

3%
3.

8%
7.

8%
5.

0%
4.

5%
al

ph
a

−2
.3

%
6.

1%
**

*
7.

8%
**

*
−2

.4
%

5.
3%

**
*

7.
1%

**
*

[−
0.

6]
[3

.2
]

[5
.2

]
[−

0.
6]

[2
.8

]
[4

.8
]

M
od

el
R

*
(s

pe
ci

al
iz

ed
,ω

a
=

0.
35

)
7.

6%
6.

4%
9.

1%
7.

8%
7.

1%
10

.0
%

al
ph

a
−2

.3
%

3.
9%

**
2.

4%
−2

.4
%

3.
2%

*
1.

5%
[−

0.
6]

[2
.1

]
[1

.6
]

[−
0.

6]
[1

.7
]

[1
.0

]
M

od
el

R
*

(s
pe

ci
al

iz
ed

,ω
a

=
0.

50
)

7.
6%

7.
7%

12
.8

%
7.

8%
8.

2%
13

.6
%

al
ph

a
−2

.3
%

2.
7%

−1
.3

%
−2

.4
%

2.
1%

−2
.1

%
[−

0.
6]

[1
.4

]
[−

0.
8]

[−
0.

6]
[1

.1
]

[−
1.

3]



2218 The Journal of Finance R©

required excess return for the traditional investor is 6.2%. These computations
suggest that our model calibration produces sensible required rates of return for
traditional investments and that the sample period is not particularly unusual.

We now turn to an evaluation of the investment with an explicit downside
risk exposure. The [Z = −1, L = 2] put-writing portfolio has a mean realized
excess return of 10.3% per annum. A specialized investor who is forced to
allocate 35% to this investment requires an excess return of 6.4% per annum,
or 7.7% if forced to allocate 50%. Both of these requirements are considerably
higher than the CAPM required excess rate of return of 2.9% or the 4.3%
excess return that would be required if the investor was able to hold a small
allocation. The model risk premium is very volatile, averaging 15% to 17%
for specialized investors with large allocations in 2008 and 2009, when both
the VIX and realized volatility were high. The Internet Appendix presents the
corresponding analysis for the [Z = −2, L = 4] put-writing portfolio.

Panel B of Table V reports estimated alphas based on the Gaussian CAPM
and the generalized model required rate of return for the S&P 500 index and the
two put-writing portfolios under various assumptions. The CAPM model con-
sistently indicates the highest annualized alphas for put-writing strategies,
with point estimates of 7.4% (t-statistic = 3.9) for the [Z = −1, L = 2] put-
writing portfolio and 9.2% (t-statistic = 6.1) for the [Z = −2, L = 4] put-writing
portfolio. These high values reflect the implicit assumption of an infinitesimal
allocation to the put-writing strategy, along with the failure to account for
the non-Gaussian distribution of the market portfolio. Maintaining infinites-
imal allocations but accounting for the non-Gaussian distribution increases
the required rates of return (traditional, ωa = 0) by roughly 1.5% per annum
relative to the CAPM, but the alphas remain statistically significant. Finally,
when the allocation is fixed to be large at either 35% or 50% of the special-
ized investor’s wealth, the required rates of return become sufficiently high to
render the abnormal returns indistinguishable from zero. In particular, note
that the required rate of return on the [Z = −2, L = 4] put-writing portfolio
begins to exceed that of the [Z = −1, L = 2] portfolio, even though the latter
has a higher measured CAPM beta in the sample (Table I). At an allocation of
35%, the annualized alpha is 3.9% ( t-statistic = 2.1) for the [Z = −1, L = 2]
put-writing portfolio and a statistically unreliable 2.4% (t-statistic = 1.6) for
the [Z = −2, L = 4] put-writing portfolio. At a 50% allocation, the alphas to
both put-writing portfolios are insignificant. Panel B illustrates the effect of
a more negative skewed equity index distribution (skewness = −1.5) on the
required rates of return on various investments. While the required rate of
return for the equity index increases by only 20 basis points per annum, the
corresponding required rates of return for the put-writing portfolios held by
specialized investors increase nearly 1%.

E.2. A New Perspective on the Expensiveness of Index Put Options

A specialized investor with a 35% allocation to the put-writing portfolios real-
izes a statistically significant alpha from the [Z = −1, L = 2] put-writing port-
folio, and a statistically insignificant alpha for the [Z = −2, L = 4] put-writing
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portfolio, despite the fact that this portfolio looks better based on traditional
mean-variance metrics. Neither of the portfolios produces statistically signif-
icant alphas once the specialized investor is forced to have a 50% allocation.
These findings contrast with much of the existing literature, which documents
high negative (positive) risk-adjusted returns to buying (selling) index options
(e.g., Coval and Shumway (2001), Bakshi and Kapadia (2003), Bondarenko
(2003), Frazzini and Pedersen (2012), Constantinides, Jackwerth, and Savov
(2013)).16 The conclusion of index put options being highly expensive implicitly
assumes that an investor who is short these portfolios would earn the negative
of the long portfolio returns. This is far from the reality, as an investor with
a short position would be required to post sufficient margin to initiate the po-
sition and maintain sufficient margin to survive the sample paths realized ex
post in the data (Santa-Clara and Saretto (2009)).

The annualized alphas we report are an order of magnitude lower than re-
ported in previous papers. This difference is due to (1) incorporating margin
requirements, as emphasized by Santa-Clara and Saretto (2009), (2) a cost of
capital computation that explicitly accounts for the nonlinearity of the pay-
off profiles, and, importantly, (3) investor portfolio concentration. The large
margin requirements for short positions in index put options effectively make
these positive net supply assets; the supplier of these payoffs has to allocate
considerably more capital to this activity than that implied in the frictionless
models of Black and Scholes (1973) and Merton (1973). Moreover, this is a risk
that is not well distributed throughout the economy, as the suppliers of these
securities are typically highly specialized in bearing this risk. The same chan-
nel highlighted in our paper—concentrated portfolios require additional risk
premium above the frictionless model, especially when a nonlinear downside
exposure is present—manifests here. From the perspective of the frictionless
model, both alternative investments and index put options seem expensive, but
much less so from the perspective of specialized investors (see also Garleanu,
Pedersen, and Poteshman (2009)). These two frictionless model anomalies are
fairly consistent with one another after accounting for these notable features.

Finally, it is important to recall that these calculations rely upon a specific
distributional assumption about the underlying stock market index, which is
roughly consistent with historical experience. A slightly worse left tail will
have a meaningful effect on the required returns for these portfolios, given
their nonlinear risk profiles and the large allocation sizes, as illustrated in the
right-hand panel of Panel B.

16 Coval and Shumway (2001) report that zero-beta, at-the-money straddle positions produce
average losses of approximately 3% per week. Bakshi and Kapadia (2003) conclude in favor of a
negative volatility risk premium by examining delta-hedged options returns. Frazzini and Pedersen
(2012) report mean monthly delta-hedged excess returns between −9.5% (at-the-money) and −30%
(deep out-of-the-money) for one-month index put options.
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IV. Conclusion

Standard linear factor models (CAPM, Fama–French, Fung–Hsieh) indicate
that the required excess rate of return for hedge fund indices is equal to roughly
40% of the excess rate of return on the equity index, which implies that hedge
funds have earned pre-fee alphas between 6% to 10% per annum (January
1996 to June 2012). We demonstrate, however, that the pre-fee returns of
broad hedge fund indices are well matched by mechanical S&P 500 put-writing
strategies, suggesting that hedge fund managers do not earn alpha, but rather
are compensated for bearing downside market risks. Distinguishing between
these two views of capital market efficiency hinges critically on a strong prior
belief in the accuracy of the hedge fund return reporting process, which has
been challenged by a growing literature documenting conditional and uncon-
ditional return smoothing (Asness, Krail, and Liew (2001), Getmansky, Lo,
and Makarov (2004), Bollen and Pool (2008)), as well as manager discretion
in marking portfolio NAVs (Cassar and Gerakos (2011), Cao et al. (2013)). In
particular, we show that smoothing two reported monthly returns (September
1998 and October 2008) is sufficient to statistically obscure the exposure to
downside market risks, which can lead one to conclude in favor of high pre-fee
alphas. An investor who is skeptical about the quality of the data is not able to
reliably reject the presence of downside risk.

We show that the high realized excess returns to put-writing strategies and
pre-fee hedge fund index returns are consistent with an equilibrium in which
a small subset of investors bears the aggregate supply of downside risks. In
practice, there is evidence that end users of hedge fund investments (Lerner,
Schoar, and Wang (2008)) and the marginal price setters in equity index op-
tions, typically viewed to be the market markers (Garleanu, Pedersen, and
Poteshman (2009)), are specialized and therefore hold concentrated portfolios.
Merton (1987) emphasizes that, in an equilibrium with segmentation, assets
requiring specialization will produce positive intercepts in regressions onto
common market factors even though there is no true alpha, with the intercept
capturing a concentration premium. We demonstrate that the required concen-
tration premium is particularly large when the specialized asset has a payoff
profile with downside risk relative to the market factor.

The transparency of the state-contingent payoffs of various put-writing port-
folios allows us to develop cost of capital estimates for potentially large allo-
cations to investments explicitly exposed to downside market risks. The model
required rates of return vary as a function of investor preferences and alloca-
tions, the nonlinearity of the portfolio (option strike price and leverage), and the
properties of the underlying equity market return distribution (volatility and
tail risks). We find that the proper required excess rates of return—reflecting
the nonlinearity of the payoff profile and large allocation—can be significantly
higher than those indicated by models focusing on marginal deviations from
allocations in a frictionless equilibrium. For example, using two put-writing
strategies that are statistically indistinguishable from the pre-fee returns of
the hedge fund index and portfolio allocations comparable to allocations to



The Cost of Capital for Alternative Investments 2221

alternatives at endowments, the proper required excess rates of return range
from 6% to 14% per annum. This offers a dramatically different perspective on
the cost of capital for alternative investments, which cannot be reliably rejected
by investors concerned about return reporting errors.

Initial submission: April 25, 2012; Final version received: March 4, 2015
Editor: Campbell Harvey

Appendix: Asset Pricing with NIG Distributions

The normal inverse Gaussian (NIG) distribution is characterized by four
parameters, (a, b, c, d). The first two parameters control the tail heavyness and
asymmetry, and the second two—the location and scale of the distribution. The
density of the NIG distribution is given by

f (x; a, b, c, d) =
a · d · K1

(
a ·
√

d2 + (x − c)2
)

π ·
√

d2 + (x − c)2
· exp(d · η + b · (x − c)), (A1)

where K1 is the modified Bessel function of the third kind with index 1
(Abramowitz and Stegun (1965)) and η = √

a2 − b2 with 0 ≤ |b| < a. Given the
desired set of moments for the NIG distribution—mean (M), variance (V), skew-
ness (S), and kurtosis (K)—the parameters of the distribution can be obtained
from

a =
√

3 · K − 4 · S2 − 9
V · (K − 5

3 · S2 − 3)2
, (A2)

b = S√V · (K − 5
3 · S2 − 3

) , (A3)

c = M − 3 · S · √V
3 · K − 4 · S2 − 9

, (A4)

d =
3

3
2 ·
√
V · (K − 5

3 · S2 − 3)

3 · K − 4 · S2 − 9
. (A5)

In order for the distribution to be well-defined we need, K > 3 + 5
3 · S2. The

NIG-distribution has closed-form expressions for its moment-generating and
characteristic functions, which are convenient for deriving equilibrium risk
premia and option prices. Specifically, the moment generating function is

E[exp(u · x)] = exp(c · u + d · (η −
√

a2 − (b + u)2)). (A6)
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A.1. Pricing Kernel and Risk Premia

Suppose the value of the aggregate wealth portfolio evolves according to

Wt+τ = Wt · exp((μ− kZ (1)) · τ + Zt+τ ), (A7)

where kZ(u) is the cumulant generating function of random variable Zt+τ :

kZ(u) = 1
τ

· ln Et[exp(u · Zt+τ )] = c · u + d ·
(
η −

√
a2 − (b + u)2

)
. (8)

If markets are complete, there will exist a unique pricing kernel, 
t+τ , which
prices the wealth portfolio as well as the risk-free asset. Assuming the repre-
sentative agent has CRRA utility with coefficient of relative risk aversion, γ ,
the pricing kernel in the economy is an exponential martingale given by


t+τ

t

= exp(−r f · τ − γ · Zt+τ − kZ (−γ ) · τ ). (A9)

Now consider assets whose terminal payoff has a linear loading, β, on the
aggregate shock, Zt+τ , and an independent idiosyncratic shock, Zi,t+τ :

Pt+τ = Pt · exp(
(
μ(β) − kZ(β) − kZi (1)

) · τ + β · Zt+τ + Zi,t+τ ), (A10)

where μ(β) is the equilibrium rate of return on the asset, and the two k(·) terms
compensate for the convexity of the systematic and idiosyncratic innovations.
For example, when β = 1 and the variance of the idiosyncratic shocks goes to
zero, the asset converges to a claim on the aggregate wealth portfolio. Assets
with β < 1 (β > 1) are concave (convex) with respect to the aggregate wealth
portfolio.

To derive the equilibrium risk premium for such assets, we make use of the
equilibrium pricing condition:


t · Pt = Et
[

t+τ · Pt+τ

] ⇔ 0 = 1
τ

· ln Et

[

t+τ

t

· Pt+τ
Pt

]
. (A11)

Substituting the payoff function into the above condition and taking advantage
of the independence of the aggregate and idiosyncratic shocks yields the fol-
lowing expression for the equilibrium risk premium on an asset with loading β
on the aggregate wealth shock:

μ(β) − r f = kZ (−γ ) + kZ (β) − kZ (β − γ ) . (A12)

This expression generalizes the standard CAPM risk-premium expression from
mean-variance analysis to allow for the existence of higher moments in the
shocks to the aggregate market portfolio. For a Gaussian-distributed shock,

Zt+τ , the cumulant generating function is given by kZ(u) = 1
τ

· (σ ·√τ ·u)2

2 , such
that, (A12), specializes to
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μ(β) − r f = σ 2

2
· ((−γ )2 + β2 − (β − γ )2)

= β · γ · σ 2 = β · (μ(1) − r f
)
. (A13)

In our generalized setting, the risk premium on an asset with loading β on
the innovations to the market portfolio does not equal β times the market
risk premium, unlike in the standard CAPM. The discrepancy is specifically
related to the existence of higher moments in the shocks to the aggregate
market portfolio.

Equilibrium risk premia can also be linked to the moments of the underly-
ing distribution of the shocks to the aggregate portfolio by taking advantage
of an infinite series expansion of the cumulant generating function and the
underlying cumulants of the distribution of Zt+τ :

μ(β) − r f = 1
τ

·
∞∑

n=2

κn · ((−γ )n + βn − (β − γ )n)
n!

. (A14)

The consecutive cumulants, κn, are obtained by evaluating the nth derivative of
the cumulant generating function at u = 0. The cumulants can then be mapped
to central moments: κ2 = V, κ3 = S · V 3

2 , and κ4 = K · V2. Using the value for the
first four terms, the equilibrium risk premium is approximately equal to

μ(β) − r f ≈ 1
τ

·
{
β · γ · V + β2 · γ − β · γ 2

2
· S · V 3

2

+ 2 · β3 · γ − 3 · β2 · γ 2 + 2 · β · γ 3

12
· K · V2

}
(A15)

This expression demonstrates the degree to which the agent demands compen-
sation for exposure to higher moments, and illustrates the degree to which the
standard Gaussian CAPM over- or understates the required rate of return for
an asset with a given market beta, β.

A.2. The Risk-Neutral Distribution

Suppose the historical (P-measure) distribution of the shocks, Zt+τ , is NIG(a,
b, c, d). The risk-neutral distribution, πQ = πP · 
t+τ


t
, can also be shown to be

the NIG class, but with perturbed parameters NIG(a, b − γ , c, d). To see this,
substitute the expression for the P-density into the definition of the Q-density
to obtain:

πQ =
a · d · K1

(
a ·
√

d2 + (Zt+τ − c)2
)

π ·
√

d2 + (Zt+τ − c)2

· exp
(
d · η + (b − γ ) · (Zt+τ − c) − γ · c − kZ (−γ ) · τ

)
, (A16)



2224 The Journal of Finance R©

where η = √
a2 − b2. Making use of the expression for the cumulant generating

function of the NIG distribution, the above formula can be rearranged to yield

πQ =
a · d · K1

(
a ·
√

d2 + (Zt+τ − c)2
)

π ·
√

d2 + (Zt+τ − c)2
· exp(d · η̃ + b̃ · (Zt+τ − c)), (A17)

where we have introduced the perturbed parameters, b̃ = b − γ , and
η̃ =

√
a2 − b̃. This verifies that the risk-neutral (Q-measure) distribution is also

an NIG distribution, but with shifted parameters, (a, b̃, c, d).
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